
MSX Technical Data Book

Hardware/Software Specifications

Presented by

Robs�/s MSX Worksho�
Originaly scanned by

Ivan Latorre

Converted to PDF

Eduardo Robsy

[September 2004]

SONY.

t'.liJ

MSX Technical Data Book

Hardware/Software Specifications

SONY.

Sony Corporation

4 14 1, Asahi-cho, Atsugi-shi,

Kanagawa-ken, 243 Japan

Copyright t�:' 1984 Microsoft Corporation

Produced by ASCII Corporation

Printed in Japan

PREFACE

The Microsoft MSX standard was i nv ented to provide end users
and software dev elopers with a standardiz ed computer so that
programs could run on a ny computer even though they wer e made by
differ ent manufacturers.

Thi s book pr esents the MSX specifications in detail. It is
i ntended to be a ref er ence for advanced programmers and software
dev elopers. The i nformation is generally divided four parts.

Part A, MSX H ARDWARE SPECI FICATIONS, pr esents the specifications
for the MSX system hardwar e.

Chapter 1 , Hardwar e Specif ication, cov er s the MSX standard
hardware conf iguration i n terms of the requirem ents for the LSis,
m emory siz e, i nter r upts, scr een, keyboard, and sound used i n the
mai n uni t ; a nd the various (cassette, fl oppy , pr i nter , serial , and
slot > i nt erfaces and co nnectors. It also covers topics such as
cartridges, expa nsion, ports, a nd m emory maps.

Part B, MSX SYSTEM SOFTWARE, contains a r ef er ence guide for MSX
BAS IC a nd i nformation for advanced programmi ng .

Chapter 2 , Language Specification, i s a guide to MSX-BAS IC
a nd is for use with advanced programming requiring machine l a n
guage routi nes.

Par t C, EXPANDED MSX SYSTEM SOFTWARE, is about the advanced f ea
tur es of MSX, includi ng Expa nded Disk BASIC and MSX-DOS.

Disk
Chapter 3 , MSX-DOS, co ntai ns a us er ' s guide to MSX-DOS and

BASIC, and i ncludes i nformation needed for the advanced
programmer .

Chapter 4, Other Expa nsion, covers the serial (RS-232C) ex
pansion and B IOS call s availabl e i n the extended version.

Part D, SOFTWARE DEVELOPMENT GUIDE, contains informati o n for soft
ware developers.

Chapt er 5, I nternational MSX V ersions a nd their Diff er ences,
is for manufacturers or programmers who wish to make the hardware
or softwar e be usable i nt er nationally.

Chapter 6 , Notes for
i nf o rmation that software
programming for MSX computers.

MSX Software Dev el oper s, contains
dev elopers shoul d consider when

Syntax Notation in Reference Sections

Wherever the format f or a statement/command or a function is given,
the following rules apply :

CAPS Items in capital letters must be input as shown.

< > Items in lowercase letters enclosed in angle brackets << > >
are to be suppl ied by the user.

(1 Items in square brackets ([l) are optional .

. . .

{ }

I tems followed by an ellipsis (• • • > may be repeated any
number of times (up to the length of the l ine) .

Braces indicate that the user has
more entries. At least one of
braces must be chosen unless the
in square brackets.

a choice between two or
the entries enclosed i n
entries are also enclosed

vertical bars separate the choices within braces. At least
one of the entries separ ated by bars must be chosen unless
the entries are also enclosed in square brackets.

All punctuation except angle brackets and square
brackets (i. e. , commas, parentheses, semicolons,
hyphens, equal signs> must be included where shown.

Arguments to functions are always enclosed in parentheses. In the
formats given for the functions in this book, the arguments are
abbrev iated as follows:

X and Y Represent any numeric expressions.

I and J Repr esent integer expr essions.

X$ and Y$ Represent string expressions.

2

C O N T E N T S

PART A MSX HAROOARE SPECIFICATIONS

1 . Hardwa-re S pecif !cations

1 . 1
1 . 2

MSX Standar d • • • • • • • • • • • • •

Y�X System Conf iguration
1 . 3 Main Unit

1 .3 . 1 LSis
1 .3 . 2 Memory • • .

1 . 3 . 3 Interrupts • • •

• •

. . .
. . . .

.
.

1 . 3 . 4 Screen
1 . 3 . 5 Keyboard
1 . 3 . 6 Sound

. . .

1 . 4 Interfaces
.

. . . .
1 . 4 . 1 Cassette Interface
1 . 4 . 2 Floppy Disk Interface
1 . 4 . 3 Printer Interf ace

. . . .

. . .
.

.

• • • • • • • •

. . .

.

. . .

1 . 4 . 4 RS-232C Interf ace
1 . 4 . 5 Peripheral I/O Por t (s)

.

. . . .
• • •

1 . 4 . 6 Joysticks
1 . 4 .7 Paddles
1 . 4 . 8 Connectors
1 . 4 . 9 Slots . • • • •

.

1 . 5 Cartridges • • • • • •

1 .5 . 1 Cartr idge Standa r d
.

. . .

. . . .

.

. . .

Connenction Condi tions
1 . 5 . 2 Cartr idge Bus
1 . 5 . 3 Cartr idge Bus
1 . 5 . 4 Car tridge Power Capacity

• • 8
• • 9

• . 1 0
• . 1 0

. . • . • . 1 0
.11

• • • 12
.13
. 1 4
. 1 5

• • • 1 5
. 1 8

. . • . . 1 9
• • 20
• • 2 5

• • • 27
• 2 8

• • • 2 9
• 3 0

. 3 1
• • • 3 1

. 3 2
• 3 4

1 . 5 . 5 S ampl e Circuit Diagram of Expanded Slot
• 3 4

Select Signal3 5
1 . 6 Notes for System Expansion

1 . 6 . 1 RAM Expansion
1 . 6 . 2 Slot Expansion
1 . 6 . 3 I/0 Expansion

1 . 7 Address Maps • • • . .

1 . 7 . 1 Memory Map
1 .7 .2 I/0 Address Map
1 .7 . 3 Printer Port
1 .7 .4 VDP Port
l . 7 • 5 PSG Po r t

.

l . 7 . 6 PPI Port
1 . 7 . 7 External Memory (SONY)

. 1 . 7 . 8 L ight Pen (SANYO)
1 .7 . 9 Audio/Video Control

.

I e • I I I e

. . . .
. . . .

. . .

• • • • • • • . 3 6
• • 3 6

• • • • • • • . • 3 6
• • • • • • • • • • • • • 3 7

.
.

• • • 3 8
• • • 3 8

• • 40
• • 41

. 41

. 41
. 41

. 41
. 41

1 . 7 . 1 0 Notes on I/O Address Assi gnments
1 . 7 . 1 1 8255 (PPI > Bit Assi gnments

• • 42
• • 42

. 43
1.7 . 12 PSG Bit Assignments • • • . • • •

PART B MSX SYSTEM SOFTWARE

2 . Language Specifications

2 . 1 MSX B AS IC Reference Guide • .

2 . 1 . 1 Modes of Operation • • • • • • • •

3

. . .

.

. 44

• • 46
. . 46

2 . 1 . 2 Line Format • • • • • . • • • • . • • • • . • • • • • • • • • . • . • . • . • • . . • • . . • 47
2 .1 . 3 Character Set • • • • • • • • . . • • • • • • • • • • • • • • • . . • • • . • • . • • • • • 47
2 . 1 . 4 Constants . ���� . . . 4 8
2 . 1 . 5 V ar i abl e s . • • . 50
2 . 1 . 6 'I'i'pe- Conversion . • . 51
2 . 1 . 7 Expressions and Operators . • • • • • . • • • • • • . • • • • • . • • • . . • . 53
2 . 1 . 8 Program. Editing 57
2 . 1 . 9 Special Keys . 6 2
2 . 1 . 1 0 Error Messages • • • • • • • • • . • • • • . . • • • • • • • • . . . • . • • • . • • • • • 63
2 . 1 . 1 1 Commands and Statements except those doing I/0 • . . . • . 63
2 . 1 . 1 2 Functions except those doing I/O • . • . • • . • • • • • . • • • . • • . 7 9
2 . 1 .13 Device Specific statements • • • • • . . • • • . • • • • . • . • • . 84
2 . 1 . 1 4 I/O Functions • • • • . • • • . • • • . . . � • • . • • • • . • . • . . • • . • • • • • . 1 00
2 . 1 . 1 5 Special Variables 1 0 2
2 .1 . 16 Machine Dependent Statements and Functions • • • • • • • • • 1 04
2 . 1 .17 Summary of Error Codes and Messages • • • . . • . • • • • • • • • • 1 05
2 . 1 . 1 8 MSX BASIC Reserved words • • • • • • • • . . • • • • . • • • • . • • • • • . • 1 0 9

2 . 2 Advanced Programming Guide • • • . • • • • • • • • . • • . . • • . • • . • • • . • 1 1 0
2 . 2 . 1 BIOS Entry List • 110
2 . 2 . 2 Work Area 1 3 5
2 . 2 . 3 Slot Cont r ol 1 6 1
2 . 2 . 4 Cassette I/O Mechanism . • • • • • • • • . . • • • • • . • • . • • . • • • • • • 172
2 . 2.5 MSX Printer Specifications • • • • • • • . • • • • . • . . • • • • • . • • . 177

PART C EXPANDED MSX SYSTEM SOFTWARE

3 . MSX-DOS

3 .1 MSX-DOS User's Guide • • • . • • • • • • • • • • • • • • • • • . • • • • • . • • • • • • 1 82
3 . 1 . 1 Sy stern Requirements • • • • • • • . . • • • • • • . • • . . • . • • • • • . . • • • 1 82
3 . 1 . 2 Getting Started 1 82
3 . 1 . 3 Wild Cards 1 84
3 . 1 . 4 Ill egal File Names • • • • • • • . • • • • • • • • • • • • • • 1 85
3 . 1 .5 Directories • . . • • • • • • • • • • . • • • • • • • • • • . . • . . • • • • • • • • • • • 1 86
3 . 1 . 6 Types of MSX-DOS Commands • • • . • • • . • • • • • . • • • • • • • • • • • . 1 86
3 . 1 . 7 Command Options . 1 87
3 . 1 . 8 Information Common to All MSX-DOS Commands • • • • • • • • • 1 8 8
3 . 1 . 9 Batch Processing • • • • • • • . • • • . • • . • • . . . • • • • • • . . • . . 1 89
3 .1 .1 0 The AUTO EXEC. BAT File • • • • • • • • • • • • • • • • • . • • • • • • • . • • • • 1 90
3 . 1. 1 1 How to Create a Batch File • • • • • • • • . • . • . . • • • • • • • 1 91
3 . 1 . 1 2 Replaceabl e Parameters i n .BAT Fil e • • • • . • • . • . . . 1 92
3 . 1 .13 MSX-DOS Editing and Function Keys • • • • • . . • . • • • • • 194
3 . 1 . 1 4 Instructions for Users with Single-drive Systems • • • 200
3 . 1 . 15 Disk Errors • • • • • • . • • . • • • • • • . • . • . • . . • • • . • . . • . . • • • • • . 201

3 . 2 MSX-DOS Command Guide • • • • • • • • • • . . . • . • • • . • • • . • • • • • • 202
3 . 3 MSX Disk BASIC Reference Guide • • • • • • . • • • • • • • • • . • . • 2 1 9

3 . 3 . 1 Commands and Statements • . • • • • • • • • . • . • . . . • • • • • • • • • • • 2 1 9
3 . 3 . 2 Fun ct ions • • . 2 46
3 . 3 . 3 Error Codes and Error Messages • • . • • • • • . • • . . • . • . . • • • 252

3 . 4 MSX-DOS and Disk BASIC Boot Procedure • • • • • • . • • • • • • • • • • 2 55
3 . 5 MSX-DOS and Disk BASIC Disk Drivers • • • • • • • • . • . • • • • • • • • 256
3 . 6 MSX-DOS System Calls • • • • • • . • • • • . . • • . . • • • • • • • . 267

4

4 . Other Expansion

4 . 1 MSX-RS23 2C Suppo r t • . • • • • • . • • • • . 2 90
4 . 1 . 1 Extended BASIC for RS-2 3 2C Communication • . . • • • • 2 91
4 . 1 . 2 Extended B IOS cal l s Handling RS-232C • • • . • • • • • • • • • . • 3 0 0

4 . 2 Other MSX Extended B IOS Calls • • • • • • . • • • • • • • • • • • • . • . . . • 3 0 9
4 . 2 . 1 Extended B IOS Cal ls • • • . • • . • • • • • • . • • • • • • • • • • • • 3 0 9
4 . 2 .2 Extended B IOS Maker I D Number • • . . . • • • • . • • • • . • . . • • . • 313

4 . 3 Tenkey Suppo r t on MSX • • . • . • • • • • • • • • • • • • • • • • • . • • • • • • • • . 3 1 4

PART D SOFTWARE DEVELOPMENT GUIDE

s. International MSX versions and their Differences

5 . 1 Introduction ,., 3 1 6
5 . 2 Keyboard 316

5 . 2 . 1 Keyboard Hardware • • . . . • • . • • • • . • • • • • • . . • • • • • • • . . 3 1 6
5 . 2 . 2 Character S e t • • • • • • • • • . . • • • • . . . • . • . • • • • . • • • • • • . • • . . 3 1 7
5 . 2 . 3 Keyboard Layout • • • • • • • • • • • • • • . • • • • . • . • • • . • 3 1 9
5 . 2 . 4 CAPS Lock • • • . • • • • . . . • . . • • • • • . • • • • . . • . • • • . • • . . 3 1 9
5 . 2 . 5 DEAD-Key Functions • • • • . • • • • • . . • • • • . • . • • • • • • • • . • • • . • 3 3 1

5 . 3 Screen Mode 3 3 3
5 . 4 Other Differences among Versions . • • . • . . • • • • . . • • . . • . • • • 3 3 4
5 . 5 ID Bytes 3 3 5

6 . Notes for MSX Software Devel oper s • • . • • • • • • . • • . • • • . • • . • • • • 3 3 6

5

6

PART A

MSX HARDWARE SPECIFICATIONS

MSX HARDWARE SPECIFI CATIONS

1 . Hardwar e Specifications

1 . 1 MSX Standard

o CPU
Z80A compatible

o MEMORY
ROM:
RAM:

32K bytes CMSX system softwar e)
16K bytes (Minimum>

o SCREEN DISPLAY
Text displ ay :
Graphics :
Color s :

o CASSETTE TAPE

32 x 24 (See Section 2 . 4)
256 X 192
16

FSK format, 1200/2400 Baud

o SOUND
8 Octaves, 3 Voices

o KEYBOARD V ERSIONS
Alphanumerics, Japanese, Graphics (Japanese)
Alphanumerics, European, Graphics (Inter national)

o FLOPPY DISK DRIVES
H ardware depends on the manufactur er
Disk format MS-DOS-compatible

o PRINTER *

8 bit pa r allel

o ROM CARTRIDGE AND I/0 BUS
Software cartr idge and expansion BUS slots

o JOYSTICKS *
1 or 2

o CHI NESE CHARACTERS *
At manuf acturer ' s disgression

* The items with asterisks may not be provided in the basic
system configur ation.

8

MSX HAR'DIIARE SPECIFI CATIONS

1 . 2 MSX System Conf iguration

o MINIMUM CONFIGURATION

SOUND OUTPUT

V IDEO OUTPUT CARTRIDGE SLOT x 1

1
ZBOA ROM 32K
PSG RAM 16K
VDP PPI

I KEYBOARD

CASSETTE J
o SOFTWARE SUPPORT LIMIT

SOUND OUTPUT

V IDEO PRINTER
OUTPUT OUTPUT

t 1
ZBOA ROM 32K
PSG PPI
VDP

RAM 32K for BASIC
64K for DOS

KEYBOARD

I
JOYSTICK

X 1

CARTRIDGE
SLOTS x 1 5

CASSETTE
JOYSTICK

X 2

9

-

MSX HARI:MARE SPECIFICATIONS

1 . 3 Main Unit

1 . 3 . 1 LSis

0 CPU
Z 60 A compatibl e
Clock 3 . 5 7 95 45MHz (NTSC Color sub-carri er f requency)
1 WAIT in Ml CYCLE

0 VDP
TI TMS-991 6A compatible

0 PSG
G I AY-3-8910 compatibl e

0 PPI
I nt el i- 8255 compatibl e

1 . 3 . 2 Memory

o ROM

o RAM

MSX-BASIC, 3 2K bytes

Minimum 16K bytes

NOTE

Since the minimum system
conf iguration contains four
slots, the m emory ar ea may be
expanded up to 2 56 K by tes.
Each slot can be further
expanded to have four slots,
for a total of 16 slots. Thus
the maximum memory space is 1
megabyte.

The BAS I C ROM interpr eter
occupies addresses 0000 to
7FFF, and the RAM addresses
start at FFFF and grows down
ward on the memory map.

See the memory map in Section
1 . 7 for details.

10

MSX HARDWARE SPECIFICATIONS

1 .3 .3 Inter r upts

o NMI

o !NT

Not used. MSX ROM only provides a RAM hook.

Interrupts a r e accepted from the VDP and the cartridges.
The interrupt mode is 1. (Branch to 3 8 8) The MSX sy stem
software uses an interrupt f r om the VDP. The interrupt
intervals are 6 0 Hz in the NTSC version and 50 Hz in the
PAL/ SECAM version.

VDP Z80

NOTE

It is not possible to suppor t
NMI under MSX-DOS because the
address 6 6 H (an entry vector
for the NMI) is used by the
MSX-DOS FCB data.

11

MSX HARDWARE SPECIFICATIONS

1 .3 . 4 Screen

o LSI
TI TMS9 918A Compatible

o Character set
Alphanumerics + Japanese (E uropean) + Graphics
256 patterns, 8x8 dots

o Color
1 6 colors

o Sprites
3 2 sprites, with a maximum of four spr ites on the same
horiz ontal l ine .

o Display modes

r-----------------y-------T------T----�-----y------ T------,

I I I I NO. I I SPRITE I NO. OF I
I MODE I RES. I S I Z E I * ! COLOR I AVAIL. !CHARS. I
t-------y---------+-------+------+----+------+------+------�

I I LSI I 256 I I I I I I
I Graphic I Spec. I xl92 I I I 16 I I 32x24 1
I �--------+-------� 8 x 81 256 l color s l Yes �------ �
I I I Suggested I 240 I I I I I I
I I value I x 19 2 I I I I I 2 9X 2 4 I
�------- +---------+--- ----+------ +---- +------+------+------ �
I I LSI I 256 I I I I I I
I Graphic I Spec. I xl92 I I I 16 I I 32x241
I �--------+-------� 8 x 81 76 8 l color s l Yes �------�
I II ! Suggested! 240 I I I I I I
I I value I xl92 I I I I I 29X24 1
�-------+---------+-------+------+----+------+------+------,
I I LSI I 64 I I I I I I
I Multi-1 Spec. I x48blkl I I 16 I I 32x241
I color r---------+-------� 4 x 4 1 - lcolor s l Yes t------i
I I Suggested I 64 I /Block I I I I I
I I value I x40bl k l I I I I 29x24 1
�------+---------+-------+------+----+------+------+------�
I I LSI I 256 I I I I I I
I I Spec. I xl92 I I I 2 I I 40x24 1
I Text r---------+------- , 8 x 6 1 2561out of l No �------i
I I Suggested I 240 I I I 16 I I I
I I value I xl93 I I l colors l I 39x24 1
�------�--------�------�-----�---�-----�------._-----�

* Number of patterns

Suggested
values

The eight pixels f r om the left and right of the
horiz ontal l ine are not used by the software.

12

MSX HARDWARE SPECIFICATIONS

1 . 3 . 5 Keyboar d

o Layout
Alphanwner ics
Japanese syllables
European

: ASCII standard
J IS standard syllable layout

: Internati onal ver sions
Graphic Characters Depending on international version

(Selected by jumper connection)

o Scanning
Software scanning driven by VDP interrupt

o Number of keys
7 2

See section 5 . 2 .2/ 5 . 2 . 3 for details.

o Matrix diagram

Jx7 lx6 X5

PBO t-- YO 7 6 5 PBl -
PB2
PB3

Yl (PB4 . @
PBS '

PB6
PB7 Y2 8 A <*> -

Y3 J I H 0 � PCO t-- A 1
PCl t-- B

PC2 r------ c 2 I� J R Q p
PC3 t-- D 3 ['-'

4,...
5 r-

Y5 z y X
6 � 7
8 F3 F2 Fl
9 p----10 p- Y7

RETURN SUECT BS

Y8 � J). il'

yg

YlO

* Unde r score character.

X4 X3

4 3

¥ /'-.

/

G F

0 N

w v

KANA CAP
(* *)

STOP TAB

� DEL

**Code Lock key in international versions.

13

X2

2

-

'

E

M

u

GRAPH

ESC

INS

Xl xo
1 0

9 8

)
. .

D c

L K

T s

CTRL SHIFT

F5 F4

HOME SPACE

MSX HARDWARE SPECIFI CATIONS

1 . 3 . 6 Sound

o LSI
GI AY-3 -8910 Compatibl e . Clock 1.7 897725 MHz (1/ 2 CPU clock)

o OCTAVES
8 Octaves (3 Voice s>

o SOUND EFFECTS
Available

o SOFTWARE SOUND OUTPUT
1 bit f rom output port

o OUTPUT LEVEL
-Sdbm (Providing the system has an output connector>

o OONNECTOR
RCA 2 pins (Prov iding the system has an output connector)

14

MSX H ARDWARE SPECIFI CATIONS

1 . 4 Interfaces

1 . 4 . 1 Cassette Interface

o INPU T
From the earphone terminal of the tape recorder

o OUTPUT
To the micr ophone terminal of the tape recorder

o SYNCHRON IZATION
Asynchronous, software-controlled

o B AUD RATES
1200 baud (120 0Hz - 1 wave " 0 " , 2400Hz
n 1 ") (Default)

2 waves

2400 baud (2400Hz 1 wave " 0 " , 4800Hz - 2 waves
" 1") , software-selected
(The tape recorder to be used may have to be speci
fied by the manufacturer when using 2400 baud)

o MODULATION
FSK (Frequency Shift Key ing) , software-controlled

o DEMODULATION
Software-controlled. The system software automatically
detects the baud rate upon receiving the data.

o MOTOR CONTROL
Available

o CONNECTOR
DIN 45326 (8 pins)

15

MSX H ARDWARE SPECIFICATIONS

o TABLE OF S IG NAL PINS

r-----T----------T---------T-------------------------------,

I PIN I SIGNAL I I
I NO. I NAME I DIRECTION I PIN CONNECTION
�-----+----------+---------+-------------------------------�

1 G �
·-----+----------+---------�

I I I I
I 2 I GND I I
�-----+----------+---------�

I I I I
I 3 I GND I I
�-----+----------+---------i

I I I I
I 4 I CMTOUT I OUTPUT I
�----+- ---------+---------�

I I I I
I 5 I CMTIN I INPUT I
�----+----------+---------i
I I I I
I 6 I REMOTE + I OUTPUT I
·-----+----------+---------;
I I I I
I 7 I REMOTE - I OUTPUT I
·-----+----------+---------i

I I I I
I 8 I GND I I
�-----._ _________ ._ ________ ._ ______________________________ �

16

MSX H ARIMARE SPECIFICATIONS

o SAVE Level

0

0

The constants in the SAV E circuit ahoul d be adjusted so as to
perform the output l evel as follow s :

Output l evel -45 dBm ± 5 dBm (0 dBm = 0. 77 5 V)

The output should be 2 2 rnV p-p - 7 rnVp-p at 120 0 Hz input signal .

··············::::::·::::.:::::1:

Sampl e Circuit for SAVE

JC ---i Output to GMT

lp F �7kQ

I
4.7kn

Standard Value (*) 0.022pF lOOQ

Freq uency Characteristics

6dB/oct 6dB/oct

MIN 16Hz MAX200Hz 3kHz

Lower Cutoff Frequency (*) Higher Cutoff Frequency

* Note that the lower cutoff capacitor i s to protect the IC of MSX.
Cassette tape recorders themselves will not be harmed even if
it i s not there. The capacitance may be i n the range 0 . 1 - 2 . 2 �F.
Adj ust the capacitor to l imit the lower cutoff frequency in the
range 1 6 - 200Hz, if the output inpedance of the IC is too high.

17

MSX HARDtlARE SPECIFICATIONS

1 . 4 . 2 Fl oppy Disk Interface

o The Floppy Disk Interface contains 16K bytes of ROM beginning
at 4 0 0 0 H that includes the following modules :

* MSX-DOS KERNEL
* MSX DISK BASIC
* PHYS ICAL DISK I/0 DRIVER (Suppl ied by manufact urer)

o The hardware interface is not specif ied. The phy sical disk
I/O driver suppl ied by the manufact urer should resolve the
hardware differ ence s.

o Ideally, the mechanism in the disk drive should detect that the
drive door has been opened. This reduces the number of disk
accesses required to check if the system disk been replaced.

0 Floppy disk format: MS-DOS compatible

8- inch Single-density 1 2 8 Byte s/Sector

8-inch Double-density 1 0 2 4 Bytes/ Sector

5 . 25-inch Doubl e-density 512 Bytes/Sector

3 . 5- inch CFD 512 Bytes/ Sector

3 - inch CFD 512 Bytes/ Sector

18

MSX H �DWARE SPECIFICATIONS

1 . 4 . 3 Printer Interface

o SPECIFICATIONS
8 bit parallel, handshakes by BUSY and STROBE

o LWEL
TTL

o OIARACTER CODES
Same as the MSX di spl ay codes

o CONNECTOR
1 4-pin AMP compatible

o L IST OF PINS

r----- - - - - � -------�--y----------------------------------�

I I SIGNAL I I
I PIN NO. I NAME I I/01 PIN CONNECTION
�--------+--------+---+----------------------------------�
I 1 I PSTB I 0 I
�---------+--------+----1
I 2 I PDB O I 0 I
1--- -------+--------+---4
I 3 I PDBl I 0 I
1----------+--------+----1
I 4 I PDB2 I 0 I
1----------+--------+---�
I 5 I PDB3 I 0 I ,----------------...
1----------+--------+�---�
I 6 I PDB4 I 0 I
�----------+--------+---� 7 6 5 4 3 2 1

I 7 I PDBS I 0 I
1----------+--------+---�
I 8 I PDB6 I 0 I

l J
1---------- +--------+----1
I 9 I PDB7 I 0 I

14 13 12 11 10 9 8

1----------+--------+---�
I 1 0 I N . c. I - I
1--- -------+--------+---l
I 1 1 I BUSY I I I
1----------+--------+---1
I 1 2 I N . C. I - I �----------+--------+--�
I 13 I N. c. I - I
1------- ---+-------- +---i
I 1 4 I GND I - I

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I

I

I
I
I
I
I
I
I
I
I

�---------�-------..L---4·----------------------------------.J

19

MSX HAROO'ARE SPECIFICATIONS

1 . 4 . 4 RS-2 3 2C Interface

o LSI OJMPONENTS

i-8251 Communications Interface
i-8253 Pr ogrammable Interval Timer

At least 4K bytes of ROM i s required for software support.

o PORT ADDRESSES

SOH
81H
82H
82H
83H
84H
85H
86H
87 H

RIW
RIW

R
w

R/W
RIW
R/W

w

8251 Data Port
8251 Command/Status Port
Status Sense Port for CTS, Timer/Counter 2 , RI, and CD
Interrupt Mask Register
Reserved
8253 Counter 0
8253 Counter 1
8253 Counter 2
8253 Mode Register

* The port at address 83H is reserved for use by the manufacturer.

20

MSX HARDWARE SPECIFI CATIONS

o USING THE PORT AT ADDRESS 82H

82H Read: Get System Status

r--------T-------------------------------------,

I Data
I Bit Description
�-------+-------------------------------------�

I D7 I CTS (Cl ear To Send) I
I I 0: CTS Asserted I
I I 1 : CTS Negated I
I D6 I Timer/Counter Output-2 from i8253 I
I 05 I --, I
I D4 J I
I 03 J I Reserved I
I D2 I --.J I
I D l I + RI (Ring Indicator) I
J I 0: RI Asserted I
I I 1 : RI Negated I
I DO I + CD (Carr ier Detect) I
I I 0: CD Asserted I
I I 1 : CD Negated I
�-------�------------------------------------�

NOTE: The signals with the pl us (+) sign are optional.
If only one signal is chosen, it must be 'CD'.

NOTE

The CTS signal is sensed through the port
instead of through the 8251 because of a
problem in the CTS logic in some versions
of the 8251 . Software handl ing is thus
made p()ssible.

21

MSX HARDiARE SPECIFICATIONS

82H Write : Interrupt Mask Register

�--------�---------------------------------------,

I Data
I Bit Description
�-------+--i

D7 ---.
06 I
DS I Reserved
04 --..1.

D3 + Timer Interrupt f rom i8253 channel-2
1 : Mask Interrupt <Initial val ue)
0 : Enable Interrupt

02 + Sync character detect/Break detect
1 : Mask Interrupt (Initial val ue)
0 : Enable Inte rrupt

Dl + Transmit Data Ready (Tx Ready)
1 : Mask Interrupt (I nitial val ue)
0 : Enabl e Inter r upt

DO Receive Data Ready (Rx Ready)
1 : Mask Interrupt (I nitial val ue)
0 : Enable Interrupt

�-------._---------------------------------------�

NOTE : The signals above with the pl us (+) si.gn are optional .
The minimum requi rement for the interrupt signal is
thus Rx Ready .

22

MSX HARDWARE SPECIFICATIONS

o USING 'mE 8253 TO G ENERATE BAUD RATE CLOCK FOR THE 8251

A. CRYSTAL FREQUENCY

The crystal freq uency is 1 . 8 432 MHz.

�------------------�-----------------------------,

I Baud rate (Baud) I Scale Factor and Error (xl6) I
r------------------+------------------------------�

50
75

110
150
300
6 00

1200
1 80 0
2000
2400
3 6 0 0
4800
7200
9600

1 9200

2304
1536
1 0 47

7 6 8
3 84
192

96
64
58
48
3 2
2 4
16
1 2

6

1 1 0 . 0 2 87 +0 . 3%

1 9 86 . 2 - 0 . 7 %

�-----------------�-----------------------------�

B. USING THE COUNTER CHANNEL

CHO : Rx Baud rate clock
CHl : T x Baud rate clock
CH2 : Used by appl ication (Interrupt generated optionally)

23

MSX HARDWARE SPECIFICATIONS

o PINS OF DB25 CONNECTOR

r-----�-�-----------------,

I Pin Signal
�-------+------------------�

I 1 I Frame Ground I
I 2 I Transmit Data I
I 3 I Receive Data I
I 4 I Request To Send I
I 5 I Clear To Send I
I 6 I Data Set Ready I
I 7 I Signal Ground I
I 8 I Carrier Detect I
I 9 I I
I 10 I I
I 11 I I
I 12 I I
I 13 I I
�-------�-----------------�

24

r-------y--------------------,

I Pin Signal
�-------+--------------------�

I 1 4 I
I 15 I
I 16 I
I 17 I
I 1 8 I
I 1 9 I
I 20 I Data Terminal Ready
I 21 I
I 22 I Ring Indicator
I 23 I
I 24 I
I 25 I
I I
L-------�-------------------

MSX H ARDWARE SPECIFICATIONS

1 . 4 . 5 Peripheral I/O Port(s) (1 or 2 > *

o LSI
AY-3-8910 compatible

o I/O
Input 4 bits, Output 1 bit, Bidirectional 2 bits per port

o LOG IC
Active high

o LE.VEL
TTL

o CONNECTOR
9-pin AMP compatible

o LIST OF PINS

r-----�-------�--------�--------------------------------,

I PIN I SIGNAL I I I
I NO. I NAME IDIRECTION I PIN CONNECTION I
�----+--------+---------+---------------------------------�

I I I I I
I 1 I FWD I Input I I
1------+--------+----------t I
I I I I I
I 2 I BACK I Input I I
�----+--------+----------t I
I I I I I
I 3 I LEFT I I nput I I
�----+--------+----------t I
I I I I I
I 4 I RIGHT I I nput I I
�----+--------+---------; <D ® ® @ ® I
I I * I I I
I 5 I + SV I I I
�----+--------+---------;

I I I I nput/ I
I 6 I TRG 1 I Output I
�----+--------+--------- ..

I I I I
I 7 I TRG 2 I Output I
1------+--------+---------i

I I I I
I 8 I OUTPUT I Output I
�----+--------+---------i

I I I I
I 9 I GND I I

® <V ® ®

� ____ ._ _______ L-________ ._ _______________________________ _

* Curr ent capacity : SOmA each

25

MSX HARDWARE SPECIFICATIONS

o Circuit Diagram

AY·3·8910 74LS157 k· '"> �U > •
IOAO lY lA
10Al 2Y 2A

IOA2 3Y 3A
IOA3 4Y 4A

18
28

s 38 J:G 48

+ 5V

T

���
><

74LS157 �=
lA

IOA4 lY 2A
IOA5 2Y 18

� s 28 �G
7407X4/6

lOBO
lOBI

1082 < <
� �

1083
1084
1085
1086 1----

All resistors are lOk ohm typically.

26

��k� +5V

J3
-

0
0
0
0

'-- 0
0
0
0

J;�
+5V J4
-,- r-=-:-

0
0
0
0

'-- 0
! 0

0
r--- 0

��
+5V

1

2
3
4

5

6
7
8

9

1

2

3

4
5

6
7

8
9

MSX HARIMARE SPECIFI CATIONS

1 . 4 . 6 Joysti cks

o There are two types of j oysticks.

Joystick Type A has one trigger button, or if there i s more
than one trigger button, the software cannot distinguish between
them.

Joystick Type B has two independent trigger buttons.

The j oysticks produced fr om now on should show which type they
are and software that needs to have Type B should say so on the
package.

o Circuit Diagram

AMP
9PIN FWD

10 0
BACK

2 0 0
LEFT

3 0 0
RIGHT

4 0 0

TRG A

6 0 0
TRG B

7 o Option a s described above.

8 �------------�

27

MSX HAR�ARE SPECIFI CATIONS

1 • 4 • 7 Paddles

o A trigger pulse is sent to the 8 pin of the peripheral I/O port
every time the PDL function is called. The paddle circuit,
triggers the monostabl e multivibrator with this pulse. A pulse
of the length corresponding to the level of the volume i s
returned to the port.

A maximum of 6 channe l s of paddl es can be attached to each I/0
port.

Paddle timing diagram

FWDl

�s I TA ·-TD_j
.

L... ----

. r--r----1 r=lOtLS to 3ms

Circuit diagram (for 1 channel)

NOTE :

vee

5 0 ..

8

150KQVR

Q 1------u 1(2,3,4,6,7)

CLR

LS 123 or EQUIV.

The vol ume <or the capacitance) should be adjustable a s to
j ustify the function of the paddle.

28

MSX HARI:MARE SPECIFICATIONS

1 . 4 . 8 Connectors

r-----------------------.----------------------------------,

PIN NAME SPECIFI CATIONS
�----------------------+----------------------------------�
I I I

I 1 . Video output and I DIN 5-Pin Connector * , or I
I composite video I RCA 2-Pin Connector I
I I I
I 2 . RF modulated signal l RCA 2-Pin Connector I
J I J
�-----------------------+----------------------------------�

I I J

J Cassette I DIN 8-Pin Connector (DIN-453 26) I
�-----------------------+----------------------------------�
I I I

I I/O Port I AMP 9-Pin Connector I
�-----------------------+----------------------------------�
I I I
I Printer I UNPHENOL 14-Pin Connector I
�-----------------------+---------------------- ------------�
I I I

I Cartridge Bus I 2 . 5 4 PACE, 5 0-Pin Connector I
r-----------------------+----------------------------------�
I I I
I Audio I RCA 2-Pin Connector I
L-----------------------�---------------------------------J

* DIN 5 -PIN CONNECTOR SIGNAL PIN ASSIGMENTS

r--------�-----------�-----------------------------------�

I PIN NO. I NAME PIN OONNECTION
�--------+------------+------------------------------------�

I I I
I 1 I +SV I
r--------+------------�
I I I

I 2 I GND I
�--------+-- ----- -----i
I I I
I 3 I Audio I
r--------+------------i
I I I

I 4 I Monitor I
r--------+------------i
I I I

I 5 I RF Video I
�-------�-----------�-----------------------------------

29

MSX HARmARE SPECIFICATIONS

1 . 4 . 9 Slots

o CONCEPT OF SLOTS

For computers having 64K bytes of memory, the concepts of
slots and memory banking are nearly identical. The CPU can
directl y choose the cartridge by its slot numbe r .

The slot concept originated from a desire to support the maxi
mum amount of software. Using the slots, the software can be
run, regardless of the number of physical slots availabl e to
the computer.

o ADVANTAGES OF SLOT STRUcrURE

0

I n a common bus structure, when there is an even number of
memory banks, the dev ice select signal connected to the bus
cannot distinguish between the different dev ices by using the
same memory area. If this were to occur, the system would not
only be unusabl e, but the hardware would quickly deteriorate.
By using the slot select signal to choose the memory devices,
the above problem is avoided, and programs that handl e two or
more devices having the same memory area are made possibl e.
This is a favorable point, considering the system' s flexibil i
ty and expandability.

Circuit

8255
Chip Select

diagram

8255

PAO
PAl
PA2
PA3
PA4
PA5
PA6
PA7

-----<�

74LS153 SITSio
CSOL lCO lY A
CSOH 2CO SLTSLl
CSlL lCl 2Y B
CSlH

2Cl V2 SLTSL2
CS2l 1C2
CS2H 2C2 yj SLTSL3
CS3L 1C3
CS3H

2C3

---tA

30

MSX HARIM'ARE SPECIFI CATIONS

1 . 5 Car tridges

1 . 5 . 1 Physical Cartridge Specifications

o Physical dimension of the standard cartridge

0
r-,
I I

(FRONT)

INSERT
DIRECTION

�

: l L. ----------------.l

I· 109 I

0'>
:-o
�

G\�1 ============:::::::::__;_' J__Ll:

o Physical dimension of the expanded cartridge

I

_ _J ___ --T--
•

I;
I

'----�------ L -
109 + 0 . 7

- .:.J_ -..Q_
I

31

MSX HARDWARE SPECIFICATIONS

1 . 5 . 2 Cartr idge Bus

o LIST OF S IG NAL PINS

r-------�-------------�----T-------T--------------�----,

PIN
NO. NAME

I * I PIN
I I/0 I NO. NAME

I * I
I I/0 1

� ------+--------------+-----+-------+--------------+-----i

1
3
5
7
9

11
13
1 5
17
1 9
21
23
25
27
2 9
31
3 3
35
37
3 9
41
43
45
47
49

CSl
CS12

Reserved t
WAIT%
Ml
IORQ
WR
RESET
A9
All
A7
Al2
Al 4
A1
A3
AS
D1
D3
DS
D7
GND
GND
+SV
+5V
SOUND IN

J 0
1 0
I
I I
I o
I 0
I o
J 0
I 0
I 0
I o
I o
I 0
I o
I 0
I 0
I I/0
I I/0
I I/0
I I/0
I
I
I
I
I I

2
4
6
8

10
1 2
1 4
16
1 8
20
22
24
26
2 8
3 0
3 2
34
36
3 8
40
42
44
46
48
50

CS2
SLTSL
RFSH
INT%
BUSDIR
MERQ
RD

Reserved t
Al 5
A!O
A6
AS
Al3
AO
A2
A4
DO
D2
D4
D 6
CLOCK
SWl
SW2
+12V
-12V

0
0
0
I
I
0
0

0
0
0
0
0
0
0
0

I/0
I/O
I/0
I/0

0

�-------._-------------�----._------�-------------�----�

* The Input/Output directions are relative to the main uni t.
t Do not use the Reserved PINs.
% OPEN COLLECTOR output

32

MSX HARDWARE SPECIFICATIONS

o LIST OF SIGNAL PINS

r--------�---------�-------------------------------------�

I PIN NO. I NAME DESCRIPTION
�-------+----------+--------------------------------------1

1
2
3

4
5

6
7
8
9

1 0

1 1
1 2
1 3
1 4
1 5
16

17-3 2
33-40

41
42
43

4 4 , 46
45 , 47

48
49
50

SLTSL
Reserved

RFSH
WAIT
INT
Ml

BUSDIR

IORQ
MERQ
WR
RD
RESET

Reserved

A0-Al5
oo-n7
GND

CLOCK
GND

SWl , SW2
+5V
+1 2V

SOUNDIN
-12V

I ROM 4000 to 7FFF, selected si gnal
I ROM 8000 to BFFF, selected signal
I ROM 4000 to BFFF, selected signal
I (for 2 56K ROM)
I Slot select signal
I Reserved for future expansion. Do
I not use this pin.
I Refresh signal
I Wait signal to CPU
I Inter r upt request signal
I Fetch cycle signal of CPU
I This signal controls the direction
I of the external data bus buffer when
I the cartridge i s selected. It
I is LOW when the data is sent by the
I cartridge.
I I/O request signal
I Memory request signal
I Write signal
I Read signal
I System reset signal
I Reserved for future expansion. Do
I not use this pin.
I Address bus
I Data bus
I G round
I CPU clock, 3 . 57 9 MHz
I G round
I Detect Insert/Remove for protection
I +5V power supply
I +1 2V power supply
I Sound input (-5 dbm)
I -12v power supply

�-------�----------._ ____________________________________ _

NOTE

The CS signals imply a memory
request and a read signal .
Thus they cannot be used as
chip select for writable
devices such as RAMs.

33

MSX HARDWARE SPECIFICATIONS

1 . 5 . 3 Cartr idge Bus Connection Conditions

o FAN- IN, FAN-OUT (LS-TTL load)

Data and Address bus

Main unit

Below 2
(Fan-in)

Above slot 1
(Fan-out>

o CONTROL SIGNALS

Above slot 2

(Fan-out)

o VOLTAGE LEVEL

TTL level

1 . 5 . 4 Cartridge Power Capacity

+SV 3 0 0 rnA/slot

+12V 50 mA

-12V 50 mA

Above 5

B el ow 1

Below 2

(Fan- in)

34

cartr idge

(Fan-out>

(Fan- in)

MSX HARDWARE SPECIFICATIONS

1 .5 . 5 Sample Circuit Diagram of Expanded Slot Select Signal

DATA BUS
Do�D,

RD

TCiRQ

ADDRESS BUS
Ao-A1�

Expanded slot adapter

Expanded
SLTSL
generator

l/0 address
Decoder

1/0 Cartridge

To other expanded
slots SLTSL

(access to FFFF) · R D • SLTSEL

DATA BUS-+���� 8

74LS
273

CLKI----1-------'

8

(access to FFFF) ·WR· SL TSEL

35

74LS
153

1 Y 1----------i A
2Y B

G

74LS
139

MSX HARDWARE SPECIFICATIONS

1 . 6 Notes for System Expansion

1 . 6 . 1 RAM Expansion

o Since. MSX -BAS IC needs a contiguous RAM area f r om 8000 to FFFF,
the additional RAM should be added to the existing RAM so as
to be contiguous.

o Since the MSX-BAS IC software requires only RAM from 8000 to
FFFF, RAM installed f r om 0000 to 7FFF cannot be used by it.

1 . 6 . 2 Slot Expansion

o When slots are expanded, the expanded slots must be expanded
f rom a primary slot. Primary slots are those slots managed by
the slot select register provided in po r t A of the 8255 .
Thus, to select an expansion slot, first select the primary
slot to which the expansion slot is connected, then select the
desired slot.

o The slots directly attached to the MSX computer itself must be
primary slots. Because there are signif icant differences
between the primary and secondary slots, there must be a clear
indication of which kind of slot i s placed i n a n expansion
adapter.

o The location of the slot select register for the additional
slots i s address FFFF of the pr imary slot. To make it
possible to differentiate the register f r om ordinary RAM, take
the compl ement of the output of the register. That is, when
the register is read, the data is the complement of the value
of the register.

o A maximum of four cartridges can be connected to the cartridge
bus. Therefore, buffers are necessary if the system is to
suppo r t more than five slots. The BUSDIR signal control s the
direction of those buffers. Devices placed in expansion slots
that send signals to the CPU must also send the B USDIR signal
to change the direction of the expansion slots to the CPU.
However, for memory acce sses, it is possible to determine the
direction of the bus by using the slot sel ect signal sent to
the pr imary slot, the memory request signal , and the read/
write signal . The direction of the buffer should thus be
controlled around the buffer circuit; cartr idges containing
only ROM or RAM thus do not have to manage the BUSDIR signal ,
and expansion RAM cartridges do not have to be expensive.

cartridges containing dev ices to send signals to the CPU
<those dev ices responding to the INP instruction o r supplying
an address in response to mode 2 interrupts) must force BUSDIR
to the ' L ' level when sending data to CPU.

36

MSX HARDWARE SPECIFICATIONS

1 . 6.3 I/O Expansion

o In Z- 80 based system, it is common to place I/0 devices in the
I/0 addr ess space . Since the MSX system was designed to be
f l exible and expandable, it i s possible to add I/O devices
using cartridges that share the same address space. If this
is the case, those devices will not be able to be accessed
properly.

To avoid the above situation, the I/0 dev ices should be placed
in the memory area because they will be managed by slot select
logic and the memory cannot be accessed simultaneously when
placed in different slots, since devices placed in the memory
area cannot be accessed by software r unning in different
slots. General dev ices such as the VDP must therefore be
placed in the I/O address space . Note also that i n some cases
it i s more economical to use the I/O address space , because
only eight bits of address information have to be decoded.

The MSX system specifications define the system dev ice I/0
address space to be addresses f rom 40 to FF. The addresses
below 3F are left free. While other devices may use this
address space, other manufacturers may use the same addresses
for other purposes. Thus, we recommend that memory addresses
be used instead of the I/O area. In later MSX versions i t
is possible that standard devices will use the una ssigned
(reserved) addresses.

37

MSX HARDWARE SPECIFICATIONS

1 . 7 Address Maps

1 . 7 . 1 Memory Map

o The following is an e xample memory map.

0

FFFF ,..-----,
I I
I 3 I
J I

cooo 1-----i
I I
I 2 I
I I

8000 t-----;
I I
I 1 I
I I

4000 1-----;
I I
I 0 I
I I

0000 .. _____ ...

CPU
Memory
area

MSX BASIC uses
installed f r om
This RAM may be
slots.

,.-----, r-----, ,..-- ---, ,.-----"'

I I
I RAM I
I I
1-----i 1--- ---i 1--- ---i 1------i
I J I I I I I I
I I I I I RAM I I I
I I I I I I I I
1-------f 1----- -i 1------i +-----;
I I I I I DISK I I BAS I C I
I I
I 32K I

I I I Soft- I I Expan l
I I I ware I ' sion l

.. --1 1------i t-------1 1------i
I ROM I I I I I I I
I I I I I I I I
I I I I I I I I
*------ J. '------..1 .. _____ _____ ...

0 1 2 * 3*
System Cartridge
slot slot

the largest
8000 to FFFF
placed in any

contiguous available RAM area
for its system working RAM area.

slot, including the expansion

o The slot select register, port A of the 8255 , maps the phy sical
memory space to the logical CPU memory space in 16K-byte units
(pages) . For exampl e, the following value in the slot select
register allocates pages 0 and 1 from slot 0 , page 2 f rom slot
2 , and page 3 f r om slot o .

(MSB) 7 6 5 4 3 2 1 0 (LSB)
r----- ...- ----T-----.,.------.

I 0 0 I 1 0 I 0 0 I 0 0 I
.. _____ ._ _ _ _ _ ._ ____ ._ ____ ...

-�--- Allocate slot 0 for page 0
'----- ---- Allocate slot 0 for page 1

L------------- - Allocate slot 2 for page 2
.. ____________________ Allocate slot 0 for page 3

The physical memory is always allocated to the same memory
page in the CPU memory space. I t i s not possible to all ocate
it to a different page , as in allocating page 3 of slot 3 to
page 0 of the CPU memory space.

38

MSX HARIWARE SPECIFICATIONS

o The minimum �stem must have two slots, one for the system,
and the other for the cartridge.

NOTE

The meaning of "slot " does not
imply that i t must have a car
tridge connect or ; however, the
cartridge slot must have the
cartridge connector.

39

MSX HARDWARE SPECIFICATIONS

1 .7 . 2 I/O Address Map

FF ,---------------------- ----,
I
I

F 8 1--- -------------------------i
F7 I Audio/Video Control I

1---------------------------i
I I

FO 1---------------------------�

I I
I I

EO 1----------------------------i
I ROM for Chinese I
I Characters I

DB �--------------------------i
I I
I Floppy Disk Controller I

DO �---------------------------i
I I
I I

co 1---------------------------i
I Light Pen Interf ace I

B8 �---------- ----------------i
I I

BS 1----------------------------i
I Calendar Clock I

B4 �---------------------------i
I External Memory I

BO �- -------------------------�
I PPI (82 55) I

AS �--------------------------�
I PSG (AY-3 -891 0) I

AO 1--- -------------------------i
I VDP (9 91 8A} I

9 8 1---------------------------1
I Printer Interface I

90 1---------------------------i
I I

88 1-- --------------------------l
I RS-2 3 2C Interf ace I

80 1-------- ----------- - ----- --i
I I
I Reserved I
I I

40 1----------------------- ----i
I I
I Unspecified I
I I

0 0 �-------------------------�

40

MSX HARDWARE SPECIFI CATIONS

1 . 7 . 3 Printer Port

90H R Busy state: Bit 1
90H w Strobe output : Bit 0
91H W Print data

1 .7 . 4 VDP Port

9 8H R/W Video RAM data
9 9 H R/W Command and status register

1 . 7 . 5 PSG Port

AOH W
Al H W
A2H R

Address latch
Data write
Data read

1 . 7 . 6 PPI Port

ASH RIW Port A
A9H RIW Port B
AAH R/W Port c
ABH R/W Mode register

1 . 7 .7 External Memory { Sony)

BOH thruogh B3H

1 . 7 . 8 Light Pen CSanyo)

BBH through BBH

41

MSX HARDWARE SPECIFICATIONS

1 .7 . 9 Audio/Video Control

F7H w
w
w
w

BIT4 - AV Control
BITS - Ym Control
BIT6 - Ys Control
B IT7 - Video select

L - TV
L - TV
L - Super
L - TV

1 . 7 . 1 0 Notes on I/0 Address Assi gnments

0 I/O addresses 4 0 -FF are assigned for system use.
empty area is al so reserved for system use.

The unused

Although I/O addresses are defined above, the software must
not access those dev ices directly using the above ports. All
I/O accesses must be done using BIOS calls, in order to make
the softwar e independent of hardware differences. MSX
manuf acturers may change some of the hardware from the
standard MSX system and maintain software compatibil ity by
rewri ting BIOS. The hardware differ ences would thus be trans
parent to the software.

The only exception to the above is the access to the VDP.
Locations 6 and 7 of the MSX system ROM contains the Read and
Write addresses of the VDP registe r . Software that must
access the VDP quickly may acce ss the VDP directly by using
the addresses stored in ROM.

o Addresses 00 to 3F are free. Different devices using the same
address must not be accessed simultaneously. In general , the
I/O dev ices that are not def ined here should be placed in the
memory space as memory-mapped I/0. See section 1 .6 . 3 for fur
ther details.

% The FDC may be placed in the I/O area; however, it must have
a mechanism to disable it, and it must be enabled only if the
system does accesses to the FDC. This makes i t possible for
the system to have more than one FDC interface for handling
different media types.

42

MSX HARDWARE SPECIFICATIONS

1 .7 . 1 1 8255 (PPi l Bit Assignments

r---- y--- � --T- -----T--------------------------------------,

I I I I SIGNAL I
I PORT I B IT I I/0 1 NAME I DESCRIPT ION
�---+---+---+------+--------------------------------------�

I A I 0 I I CSOL I I
I I I I I 00 00-3FFF Address slot select signal I
I I 1 I 0 I CSO H I I

�---.f

I 2 I
I I
I 3 I
t-----1
I 4 I
I I
I 5 I
1-----1
I 6 I
I I
l 7 I

u

T

p

u

T

�------+--------------------------------------;

I CSlL I I
I I 4000-7FFF Address slot select signal I
I CSlH I I
�-----+-- ------------------------------------;

I CS2L I I
I I 8000-BFFF Address slot select signal I
I CS2H I I
�-----+--------------------------------------;
I CS3L I I
I I COOO-FFFF Address slot select signal I
I CS3H I I

�---+---+--- +------+--------------------- -----------------�

I B I 0 I I I I Keyboar d return signal I
I I I I N I I I
I I I I P I I I
I I I l U I I I
I I 7 I T I I I
r----+---+--- +------+--------------------------------------;

I c I 0 I

I I 1 I
l I 2 I 0
I I 3 I
l �---1 u
I I I
I I 4 I T
I t--- - -1
I I I p
I I 5 I
I t-----1 u
I I I
I I 6 I T
I t-----1
I I I
I I 7 I

I KBO
I KBl
I KB2
I KB3

I
I Keyboard scan signal
I
I

t-------+---------------------------------------1

I I I
I CASON I Cassette control signal (�ON) I
�-------+--------------------------------------�

I I I
I CASW I Cassette write signal I
�------+---------------------------------------1

I I I
I CAPS I CAPS lamp signal (L=ON) I
1-------+--------------------------------------.f

I I I
! SOUND I Software-controlled sound output I

L----._ _ _ ._ __ ._ _ _ _ _ _ L--------------------------------------�

43

MSX HARDWARE SPECIFICATIONS

1 . 7 . 1 2 PSG Bit Assignments

r-----�----�----�---------------------.-----------------,

I PORT I B IT I I/0 I CONNECTOR PIN NO. NOTES
�-----+-----+-----+----------------------+-----------------�

A 0 J3-PIN 1 # 1
J4-PIN 1 * #2

1 I J3-PIN 2 i l
J4-PIN 2 * 1 2

2 N J3-PIN 3 # 1
J4-PIN 3 * 12

3 p J3-PIN 4 #1
J4-PIN 4 * # 2

4 u J3-PIN 6 i l
J4-PIN 6 * 1 2

5 T J3-PIN 7 t l
J4-PIN 7 * t-2

6 KEY LAYOUT Select 14

7 CSAR
(Cassette tape READ)

FWDl
FWD2
BACK!
BACK2
LEFT!
LEFT2
RIGHT!
RIGHT2
TRGAl
TRGA2
TRGBl
TRGB2
Japanese

version only

�-----+-----+-----+----------------------+-----------------,
I B I 0 I I J3-PIN 6 # 3 1 -- I
I I 1 I 0 I J3-PIN 7 t3 I I " H 11 Level I
I I 2 I U I J 4-PIN 6 * 13 I I I
I I 3 I T I J4-PIN 7 * 13 1 -- I
I I 4 I P I J3-PIN 8 I I
I I 5 I U I J4-PIN 8 * I I
I I 6 I T I PORT A INPUT SELECT I Selects J3 or J4 1
I I 7 I I KLAMP I Japanese I
I I I I (KANA LAMP L=ON) I version only I
�-----+-----+----- +------------------- - - -�----------------�

i l Available if bit 6 of port B is LOW and i s used by JOYSTICK!
1 2 Available if bit 6 of po r t B is HIGH and i s used by JOYSTICK2
#3 Set these pins to "H " when using them as an input port.

Connect an open collector buffer to the output.
#4 JIS layout - " H " , syllable layout - "L"

<Remark> PIN 5 : +SV
PIN 9 : GND

o On the minimum MSX system, there is no J4 connector.

44

PART B

MSX SYS TEM SOFTWARE

MSX BAS IC REFERENCE G OIDE

2 . Language Specifications

2 •. 1 MSX-BAS IC Reference Guide

MSX-BAS IC is an extended version of Microsoft Standard BASIC
Version 4 . 5 , and includes suppor t for graphics , music, and various
peripherals attached to MSX Personal Computers. Generally, MSX
BASIC i s designed to follow GW-BAS IC, which is one of the standard
BASICs running on 16-bit computers. During the creation of MSX
BASIC, a major effort was made to make the system as flexible and
expandabl e as possible.

MSX-BAS IC also features a BCD-arithmetic function with a double
precision accur acy of up to 1 4 digits. Arithmetic operations thus
do not generate rounding errors that tend to confuse new program
mers. In addition, all trancendental functions are calculated
with 1 4-digit accuracy. 16-bit, signed, integer s are also availa
ble for faster execution.

2 . 1 . 1 Modes of Operation

When MSX-BASI C is initialized, it displays the "OK" prompt .
"Ok" indicates MSX-BAS IC i s at command l evel : that is, it i s ready
to accept commands. At this point, MSX-BAS IC may · be used in
either of two mode s : direct mode or indirect mode.

In the direct mode, MSX-BAS IC statements and commands entered as
they are without preceeding l ine numbe r s . They are executed imme
diately, and the results of arithmetic and logical operations may
thus be determined quickly. While these results may also be
stored for later use, the instr uctions themselves are lost after
execution. Direct mode is thus useful for debugging and for using
MSX-BAS IC as a "calculator " for quick computations not requiring
a complete program.

The indirect mode is used for entering programs. Program l ines are
preceded by line numbe rs and are stored in memory . The program
stored in memory is executed by entering the RUN command.

46

MSX BAS IC REFERENCE GUIDE

2 . 1 . 2 Line Format

The program l ines of MSX-BAS I C programs must be in the follow ing
format. Squar e brackets denote statements that are optional .

nnnnn BASIC statement [: BASIC statement • • •] <Carriage Return>

An MSX-BAS IC program l ine always begins with a line number and
ends w ith a carr iage return. A logical line may contain a maximum
of 255 characters. More than one BASIC statement may be placed on
a logi cal l ine, but the statements must be separated by a colon.

The l ine number s indicate the order in which the program l ines
will be stored in memory , and in MSX-BAS IC, they must be between 0
and 65529. They are also used as references during branching and
editing.

During editing, a period (.) may be used with the LIST, AUTO, and
DELETE commands to refer to the current l ine.

2 . 1 . 3 Character Set

The MSX-BAS IC character set consists of alphabetic characters,
numeric character s , special characters, graphic characters, and
both (Japanese> hiragana and katakana characters. See section
5 . 2 . 2 for detai l s .

The alphabetic characters in MSX-BAS IC are the uppercase and
lowercase letters of the alphabet .

The MSX-BAS IC numer ic characters a r e the digits 0 through 9 .

In addition, the following special characters are recognized by
MSX-BASI C :

Character Action

Blank
= Equals sign or assi gnment symbol
+ PlUS sign

Minus sign
* Asterisk or multiplication symbol
I Slash or division symbol
A Up a r r ow or exponentiation symbol
(Left pa renthesis
) Right par enthesis
% Percent
Number (or pound) sign
$ Dollar sign
1 Exclamation point
[Left bracket
1 Right bracket

��a
Period or decimal point

47

MSX BASIC REFERENCE GUIDE

.
I
.
.

&
?
<
>
¥

<Rubout>
<Escape>
<Tab>

<Line feed>
<Carriage

return>

Single quotation mark (apostrophe)
Semicolon
Colon
Ampersand
Question mark
Less than
Greater than
Yen sign or integer division symbol
(back sl ash in international versions>

At sign
Underscore
Deletes last character typed.
Escapes
Moves print position to next tab stop.
Tab stops are set every eight columns.
Moves to next phy sical line .

Terminates input of a l ine.

2 . 1 . 4 Constants

Constants are the values MSX-BAS IC uses during execution. There
are two types of constants : str ing and numeric.

A string constant i s a sequence of up to 255 alphanumeric
characters enclosed in double quotation marks.

Exampl es :_
"HELLO"
" $25 , 0 0 0 . 0 0 "
11Number of Employ ees"

Numeric constants are
numeric constants cannot
numeric constants:

positive or negative numbe rs. MSX-BAS IC
contain commas. There are six types of

1 . Integer constants Whole numbers between -32768 and 3 2767 .
Integer constants do not contain decimal
points.

2 . Fixed-point
constants

3 . Floating-point
constants

Positive or negative real number s , i . e. ,
numbe rs that contain decimal points.

Positive or negative numbe r s repr esented
i n exponential form (similar to scientific
notation) . A floating-point constant
consists of an optionally signed integer
or fixed-point number (the mantissa)
followed by the letter E and an optionally
signed integer (the exponent) . The
allowable r ange for floating-point
constants is lOE-64 to 10E+63 .

48

MSX BASIC REFERENCE GUIDE

4 . Hex constants

5 . Octal constants

6 . Binary constants

Exampl es :

2 3 5 . 9 88E-7 = . 0 00023 5988
2 3 59E6 =23 59000000

(Double-precision floati ng-point constants
are denoted by the letter D instead of E.)

Hexadecimal numbers,
prefix &H .

Exampl e s :

&H76
&H32F

denoted by the

Octal numbers, denoted by the prefix &0.

Exampl es :

&0347
&01 2 3 4

Binary numbers, denoted by the prefix &B.

Examples :

&801110110
&BlllOOlll

o Single- And Double-Precision Numeric Constants

Numeric constants may be either single-precision or double
precision numbers. Single-precision numeric constants are stored
with 6 digits of precision, and are printed with up to 6 digits of
precision. Double-precision numeric constants are stored w i th 1 4
digits of precision and printed with up to 1 4 digits. Double
precision is the default for constants in MSX-BAS IC.

A single-precision constant is any numeric constant that has one
of the following characteristics :

1 . Exponential form using E.

2 . A trail ing exclamation point (1) .
Examples :

-1 . 0 9E-06
2 2 . 5 1

A double-precision constant i s any numeric constant that has one
of these characteristics :

49

MSX BASIC REFERENCE GUIDE

1 . Any digits of number without any exponential or type
specifier.

2 . Exponential form using D.

3 . A trail ing number sign (f) .

Exampl es :

3 4 89
3 45692811

-1 . 094320-06
3 4 89 .0t
7654321 . 1 2 3 4

2 . 1 . 5 Variables

Variables are names used to represent values used in a BASIC
program. The value of a variable may be assi gned explicitly by
the programmer, or i t may be assigned as the result of
calculations in the program. Before a variable is assigned a
val ue , its value i s assumed to be zero.

o Variable Names And Declaration Characters

MSX-BASI C variable names may be of any length. Up to 2 characters
are signif icant. Variable names can contain letters and numbers1
however , the first character must be a letter. Special type
declaration characters are also allowed--see the discussion below .

A variable name may not be a reserved word and may not contain
embedded reserved words. Reserved words include all MSX-BAS IC
commands , statements, function names, and operator names (See
appendix for the list) . If a variable begins with FN, it i s
assumed t o be a call to a user-defined function.

Variables may represent either a numeric value or a string. String
variable names are written with a dollar sign ($) as the last
character , for example; A$ = "SALES REPORT" .

The dollar sign i s a variable type declaration character ; that i s ,
it "declares" that the variable will represent a string.

variable names may also inherently declare the variables to be
integer, single-precision, or double-precision. The last
character i n these variables must be one of the following
variable-type declaration characters :

% Integer variable
! Single-precision variable
Double-precision variable

The default type for a numeric variable name i s double-precision.

50

MSX BASIC REFERENCE GUIDE

Examples of MSX-BAS IC variable names :

Pit
MINIMUM!
LIMIT%
N$
�c

Declares a double-precision value.
Declares a single-precision value.
Declares an integer value.
Declares a string value.
Represents a double-precision value.

Variable types may also be declared w i thin a program by using the
MSX-BASIC DEFINT, DEFSTR, DEFSNG , and DEFDBL statement s. For de
tails, refer to the descriptions of these statements.

o Array Variables

An array variable is a group or a table of val ues that i s organi
zed w ith the same variable name. Each element in an array is ref
erenced by an array variable <having an integer or an integer ex
pression as a subscript) . Names for array variables may have as
many subscripts as there are dimensions in the array. For exampl e,
V (l O) would b e the name of a variable in a one-dimension array,
T C 1 , 4) would be the name of a variable in a two-dimension array ,
and so on. MSX-BAS IC supports a maximum number of 255 dimensions
for an array. The maximum number of elements depends on the size
of the computer • s memory.

o Space Requi rements

The following table lists the number of bytes that each variable
occupies in memory.

variabl es :

Array s :

Strings :

Type
Integer
Single-Precision
Double-Precision

Type
Integer
Single-Precision
Double-Precision

Bytes
2
4
8

Bytes
2 per
4 pe r
8 pe r

element
element
element

3 bytes for bookkeeping plus the length of the
string.

2 . 1 . 6 Type Conversion

When necessary, MSX-BASIC will convert a numeric constant f rom one
type to another. The following rules and examples should be kept
in mind.

51

MSX BASIC REFERENCE GUIDE

1 . If a numeric constant of one type is set to a numeric vari
able of a different type in a LET statement, the number i s
converted and stored as the type declared by the new varia
bl e name, unless an attempt to set a string variable to a
numeric variable i s done. The latter case results the oc
currence of a "Type mismatch " error .)

Exampl e :

10 A%=23 .42
2 0 PRINT A%
mN

23

2 . During the evaluation of an expression, all operands of the
ar ithmetic or relational ope ration are converted to a uni
form precision to match the most precise operand. The op
eration also results i n the precision of the most precise
operand.

Exampl e s :

10 D=6/7 1
20 PRINT D
mN

. 85 7 1 42 85 7 1 42 86

1 0 D ! =6/7
20 PRINT D!
�N

. 85 7 1 43

The operation was done in double
-precision and the result, returned
in D, is doubl e-precision.

The operation was done in double
-precision and the result, returned
to D l (a single-precision variable)
was rounded and printed as single
precision.

3 . Logical operators convert their operands to integers and
return integer results. Operands must be between - 3 27 6 8
and 32767 , or an "Overflow " er ror occurs.

4. When a floating-point value is converted to an integer, the
f ractional portion is truncated.

Exampl e :

10 C%=55 . 8 8
20 PRINT C%
�N

55

5 . If a double-precision variable i s set to a single-preci
sion value, only the fi rst six digits of the double-preci
sion are val id. Single-precision variables support only a
maximum of six digits.

52

MSX BAS I C REFERENCE GUIDE

Exampl e :

10 AI =SQR(2)
20 B=Al
3 0 PRINT Al , B

RUN
1 . 41 421 1 . 41 421

2 . 1 . 7 Expressions and Operators

An expression may be a string or numeric constant, a variabl e, or
a combination of constants and variables with operators which
produces a single value.

Operators perform mathematical or logical operations on values.
MSX-BAS IC operators may be divided into four categories:

1 . Arithmetic
2 . Relational
3 . Logi cal
4 . Functional

These categor ies will be described in the following sections.

o Arithmetic Operators

Arithmetic operators in MSX-BAS I C have a defined order of prece
dence. The operators are listed below in order of precedence.

Operator Operation Example

* , 1

+,-

Exponentiation

Negation

Multiplication, Floating
point Division

Addition, Subtraction

X" Y

-X

X*Y
X/Y

X+Y

To change the above order of ev aluation of operations, use paren
these s. The operations embedded within parentheses w il l be evalu
ated f i rst. Within the parentheses themselves, the above evalua
tion order i s followed.

o Integer Division And Modulus Arithmetic

The follow ing two additional ope rations, integer division and mod
ulus arithmetic, are also available in MSX-BAS IC:

Integer division is denoted by the yen symbol C or the backslash in
international versions) . The oper ands are truncated to integers
(between -327 6 8 and 32767) before division is done. The quotient

53

MSX BASIC REFERENCE GUIDE

is tr uncated to an integer .

Exampl es:

10¥4=2
2 5 . 6 8¥6 . 9 9a4

Integer division follows both multiplication and floating-point
division in the above order of precedence.

Modulus arithmetic is denoted by the operator MOD. Modulus
arithmetic y ields the (integer) remainder of integer division.

Exampl e :
1 0 . 4 MOD 4=2 (10/ 4=2 with a remainder of 2)
2 5 . 6 8 MOD 6 . 99=1 (25/6=4 with a remainder of 1 >

Modulus arithmetic follows integer division in the above order of
precedence.

o Overflow Or Division By z ero

During the eval uation of an e xpression, if a division by zero is
attempted, a "Division by zero" message is displayed, and the ex
ecution of the program is terminated. Also, if an overflow occurs
during the evaluation of an expression, an "Overflow" message is
displayed and the execution of the program is terminated.

o Relational Operators

Relati onal operators are used to compa re two values. The result of
the comparison is either "true " (-1) or "false" (0) . The result
can then be used to make decisions for program logic. (See the
description on the " IF" statement .)

The relational ope rators are a s follows:

Operator Relationship Example

= Equality X=Y

< > Inequal ity X<>Y

< Less than X<Y

) Greater than X>Y

<= Less than or equal to X<=Y

> = Greater than or equal to X>=Y

(The equals sign is also used to assign a value to a variabl e.)

54

MSX BASIC REFERENCE GUIDE

When both ar ithmetic and relational operators are used in a single
expression, the arithmetic operation i s done f i rst. For exampl e,

X+Y< (T-1) / Z is true if the value of X + Y is l ess than the value
of T-1 divided by z .

More exampl es:

I F S IN (X) < O GOTO 1000
IF I MOD J<>O THEN K=K+l

o Logical Ope rators

Logical operators test multiple relationships, bit manipul ation,
or Boolean operations. The logical operator returns a one-bit re
sult which is ei ther "true " (not zero) or "false " (zer o) . Logical
operations are performed after arithmetic and relational opera
tions in expressions. The outcome of a logical ope ration i s de
termined as shown in Table 1 . The operators are l isted in their
order of precedence .

Table 1 . Truth Tabl e of MSX-BAS IC Relational Ope rators

NOT
X NOT X
1 0
0 1

�D
X y X MD y
1 1 1
1 0 0
0 1 0
0 0 0

OR
X y X OR y
1 1 1
1 0 1
0 1 1
0 0 0

XOR
X y X XOR y
1 1 0
1 0 1
0 1 1
0 0 0

mv
X y X EQV y
1 1 1
1 0 0
0 1 0
0 0 1

55

MSX BASIC REFERENCE GUIDE

IMP
X y X IMP Y
1 1 1
1 0 0
0 1 1
0 0 1

Besides using relational operators to make decisions on program
flow, logical ope rators can connect two or more relations and re
turn true or false to be used in decisions.

Exampl es :

IF D<200 AND F<4 THEN 80
IF I>lO OR K<O THEN SO
IF NOT P THEN 100

Logical operators convert their operands to 16-bit, signed, two ' s
compl ement integers between -32768 and 32767 . If the operands are
not in this range, an error results. If both operands are sup
plied as 0 or -1 , the logical operators return O s or -ls. The
given operation i s done on the integers by the results of the cor
responding bits in the two operands.

It is thus possible to use logical ope rators to test bytes for a
particular bit pattern. For instance, the AND operator may be used
to •mask" bits of a status byte for an I/0 port. The OR operator
may be used to "unmask" bits of a status byte for an I/O port.
The following are examples of how the logical operators wor k .

6 3 AND 16=16

15 AND 14=1 4

-1 AND 8=8

4 OR 2=6

1 0 OR 1 0=1 0

-1 OR -2=-1

NOT X=- (X+l)

63 = binary 111111 , and 16 = binary 1 0 0 0 0 ,
so 63 AND 16 = 16 .

1 5 = binary 1111 , and 14 = binary 111 0 ,
so 15 AND 14 = 1 4 (binary 1110) .

-1 = binary 11111111111111 1 1 , and 8 = binary 1 0 0 0 ,
so -1 AND 8=8.

4 = binary 1 0 0 , and 2 = binary 1 0 ,
so 4 OR 2 = 6 (binary 110) .

1 0 = binary 1 0 1 0 ,
so 1 010 OR 1 0 1 0 = 1010 (decimal 1 0) .

-1 = binary 1111111111111111
and -2 = binary 11111111111111 1 0 ,
so -1 OR -2 = -1 .
The bit compl ement of sixteen z eros i s sixteen ones
(the two ' s complement representation of -1) .

The two' s compl ement of any iriteger i s its bit
compl ement plus one.

56

MSX BASIC REFERENCE GUIDE

o Functional Operators

In MSX-BAS IC, functions are used in expressions to call previously
defined operations such as SQR {square root) and SIN (s ine) for
use in eval uating operands. Some are resident functions provided
already in the MSX-BAS IC interpreter.

Functions may also be defined within programs if they are not pro
vided w ith the MSX-BASI C system. These functions may be def ined
by using the "DEF FN" statement. For a more detailed discussion,
refer to the descriptions for "DEF FN " .

o String Operations

Two or more str ings may be concatenated by using a plus sign (+) .
Exampl e :

1 0 AS=="FILE" : B$="NAME"
20 PRINT A$+B$
30 PRINT "NEW "+A�+B$
RUN
FILENAME
NEW FILENAME

Two strings may also be compared by using the same relational op
erators used for number s , as shown below:

= < > < > <= >=

Strings are compared by compar ing the ASCII codes of both strings,
comparing one character at a time. If all of the ASCII codes are
the same, the strings are considered equal . If some of the ASCII
codes are different, the string having the ASCI I code with the
l ower code number will precede the other string. If the end of
one of the strings i s reached before the end of the other string
i s reached, the shorter string precedes the other string. During
comparison, leading and trailing spaces are significant.

Exampl es : "AA" < " AB "
"FILENAME•="FILENAME "
"X& " > " X i "
•cL ">"cL • "kg It > " KG It

"SMYTH tl <"SMYTHE II

B $ < " 9/12/ 83 " where B $= " 8/12/ 83 "

Strings can thus be compa red for al phabetization or for determi
ning branching of program logic. Note that when string variables
are compared, the expressions must be enclosed in quotation marks.

2 . 1 . 8 Program Editing

MSX-BAS IC also includes a Full Screen Editor to allow the program
mer to enter program l ines and edit them using the entire screen.

57

MSX BASIC REFERENCE GUIDE

The MSX-BAS IC Full Screen Editor supports special keys for moving
the cursor, for inserting or deleting characters, and for erasing
l ines or screens. These time-saving special functions and thei r
key assignments will be discussed in the following sections.

With the Full Screen Editor, programmers can move the cursor any
where on the screen and make the necessary cor r ections. To make
changes, the cursor is placed on the fi rst line to be changed, and
after the changes are entered, the <RETURN> key is pressed at the
beginning of each l ine. Lines in the stored programs will not be
changed unless a <RETURN> i s entered somewhere within the line.

Writing Programs

When MSX-BASIC is used and the "Ok" pr ompt i s issued, the system
is in the direct mode and i s ready to receive a RUN command to ex
ecute the program or Editor commands. Except for commands to exe
cute programs, lines that are entered are processed by the Full
Screen Editor. All lines of text beginning w ith numbe r s are con
sidered as program statements. The Editor processes the program
statements in one of the following ways:

1 . A new line i s added to the program if the l ine number is
valid {between 0 and 65529) and at least one non-blank
character follows the l ine number .

2 . An existing program l ine i s modified i f the l ine number
al ready exists in the program and at least one non-blank
character follows the line number . The new line replaces
the text of the previously existing l ine.

3 . An existing program l ine is deleted if the l ine number
al ready exists in the program and the new line contains
only a l ine number .

4 . An error i s generated.

Am attempt to delete a non-existent l ine will result in an
"Undefined l ine number " er ror .

If the new line causes the program memory to be entirely
filled, no l ine is added and "Out of memory" is displayed.

More than one statement may be placed after a l ine numbe r , except
the statements must be separated by colons (:) . (These colons do
not require spaces. > A logical program line may have a maximum of
255 characters, including the l ine numbe r .

Editing Programs

The LIST command displays all or a part of the program cur rently
residing in memory on the screen so that they can be edited with
the Full Screen Editor. To modify the program, move the cursor to
the location r eq ui r ing change and do one of the following:

58

IISX BASIC REFERENCE G U IDE

1 . Type over existing characters

2 . Delete characters to the right of the cursor

3 . Delete characters to the left of the cursor

4 . Insert characters

5 . Append characters to the end of the logical l ine

These actions are per formed by special keys assigned to the
Full Screen Editor (see the next section> .

Program l ines are changed if a car r iage return is entered while
the cursor i s located somewhere on the l ine. This action changes
all editing done to the logical l ine , regardless of the number of
physical l ines the program l ine encompasses. The cursor can be
located anywhere in the program l ine .

Full. Screen Editor Functions

The foll owing table l i sts the hexadecimal codes for the MSX-BAS IC
control characters and s ummarizes their functions. The Control-key
sequence normally assigned to each function is also l isted. These
conform as closely as possible to ASCII standards.

A discussion of the individual control follows the table.

Table 1 . MSX-BASIC Control Fun ctions. Control char?cters are
entered by holding down CTRL and pressing the character key.

Hex
Code

Control Special

01
0 2 *
03 *
0 4 *
05 *
06 *
07 *
0 8
0 9
OA *
OB *
oc *
OD *

O E *
OF *
1 0 *
11 *
12 *

Key Key

A
B
c
D
E
F
G
H Back Space
I Tab
J
K Home
L CL S
M Return

N
0
p
Q
R INS

Function

Ignored
Move cursor to start of previous word
B reak if MSX-BAS IC is waiting for input
I gnored
Erase text to end of logical line
Move cursor to start of next word
Beep
Backspace, deleting characters passed over
Tab to next TAB stop
Line feed
Move cursor to home position
Clear screen
Ca rriage return (enter current logical
l ine)
Append at end of l ine
Ignored
Ignored
Ignored
Toggle between insert and typeover modes

59

MSX BASIC REFERENCE GUIDE

1 3 *
14 *
15 *
16 *
17 *
1 8 *

19 *
lA *

lB
lC *
lD *

l E *

lF *
7F

s Ignored
T Ignored
u Erase logical line
v Ignored
w Ignored
X Select Ignored
y Ignored
z Ignored
[ESC Ignored
¥ Right arrow Move cursor right (back slash in int. ver .)
] Left arrow Move cursor left

Up arrow Move cursor up
Down arrow Move cursor down

DEL DEL Delete character at cursor

Note : The keys marked with asterisks (*) cancel the insert
mode if the Full Screen Editor is in insert mode.

PREVIOUS WORD
The cursor is moved left to the first character of the previ
ous word. A word is defined as a character string composed
of A-Z , a-z, o r 0-9.

BREAK
Returns the control to MSX-BAS IC direct mode without changing
the line that was being edited.

ERASE TO END OF LINE
The cursor is moved to the end of the logical l ine, and the
characters passed over are deleted. Additional characters
at the new cursor position a r e appended to the l ine.

NEXT WORD

BEEP

The cursor is moved right to the fi rst character of the next
word. A word is defined as a character string composed of
A- Z , a-z , or 0 - 9 .

Produces the beep tone.

BACKSPACE

TAB

Deletes the character to the left of the cursor. All
characters to the right of the cursor are moved to the left
one posi tion. Any subsequent characters and l ines within the
current logical l ine are moved up <wrapped) .

TAB moves the cursor to the next tab stop, overwriting all
spaces. Tab stops occur every a character s .

CURSOR HOME
Mov es the cursor to the upper left corner of the screen. The
screen i s not erased.

60

MSX BASIC REFERENCE GUIDE

CLEAR SCREEN
Moves the cursor
screen, regardless
key is entered.

to home position and clears the entire
of where the cursor is positioned when the

CARR lAG E RETURN
A car r i age return ends the logical line and saves i t as part
of the MSX-BASI C program.

APPEND
Moves the cursor to the end of the li ne, without deleting the
characters passed over. All characters typed at the new
position are appended to the logical line until a carriage
return is encountered.

INSERT
Toggle switch for insert mode. When inser t mode is on, the
cursor siz e i s reduced and characters are inserted at the
current cursor position. Characters to the right of the
cursor move right as new characters are typed. Line wrap
is done on characters going beyond the physical l ine. If
the insert mode is off , the siz e of cursor returned to
normal , and the typed characters replace any existing
characters on the line.

CLEAR LOGICAL LINE
Erases entire logical l i ne when this key is entered anywhere
in the l ine .

CURSOR RIGHT
Moves the cursor one position to the right. Line wrap is
done on characters going beyond the phy sical line .

CURSOR LEFT
Move the cursor one position to the lef t . Line wrap i s done
on characters going beyond the phy sical line.

CURSOR U P
Moves the cursor up one phy sical l ine at the current
position.

CURSOR DOWN
Moves the cursor down one physical l ine at the current
position.

0 Logical line Def inition with INPUT

A logical l ine ordinar ily consists of al l the characters on all of
its phy sical l ines. During the execution of an INPUT or LINE
INPUT statement, however, this definition is modified sl ightly to
allow for formatted input. When e i ther statement i s executed,
the logical l ine is restr icted to characters typed or passed over
by the cursor. The insert mode and the delete f unction only
move characters within the logical line, and DELETE decrements
the siz e of the line.

61

MSX BASIC REFERENCE GUIDE

The insert mode increments the logical l ine, except when the
characters moved will write over non-blank characters that are on
the same physical l ine but not part of the logical line. If this
occurs, the non-blank characters that are not part of the logical
l ine are preserved, and the characters at the end of the logical
l ine are erased. This is to preserve labels existing prior to the
INPUT statement. If an incorrect character i s entered as the li ne
i s being typed, it can be deleted using the <Back Space> key or
with a Control-H. Once the unde sired character (s) have been
deleted, simply continue typing the l ine .

To delete the current l ine being typed, type Cont rol-U.

To corr ect program l ines of the program currently in memory ,
simply type a new l ine using the same li ne number. MSX-BASIC w il l
automatically replace the old l ine with the new line .

To delete the entire program curr ently in memory , enter a NEW
command. Usually the NEW command is only used to clear the memory
before entering a new program.

2 . 1 . 9 Special keys

MSX-BAS IC supports several special keys (function keys and the
STOP key) as follows.

o Function Keys

MSX-BASIC has ten predefined function keys. The curr ent settings
of these keys are displayed on the last l i ne on the screen and can
be redefined within a program with the KEY statement. The initial
settings for the keys are as follows:

F l
F2
F4
F S
F5
F6
F7
F8
F 9
FlO

col or [b)
auto [b)
goto [b]
l ist (b]
run [c r 1
col or 1 5 , 4 , 7 [c r l
cload"
cont (cr l
list . [cr 1 [u) [u)
l c l s l run [cr J

Meanings of abbreviations:

(b) = blank character
l cr l = carriage return
[u] = cursor up character
[clsl =clear screen character

(F6 color 1 5 , 4 , 4 [cr l
in fnternational versions)

The function keys can also be used as event trap keys. Refer to
the ON KEY GOSUB and KEY ON/OFF/ STOP statements for deta i l s .

o STOP key

When MSX-BAS IC is in the direct mode , the STOP key has no effect
on the current operation, and MSX-BAS IC simply ignores its input.

62

MSX BASIC REFERENCE GUIDE

If MSX-BASIC i s executing a program and the STOP key is pressed,
program execution is suspended and the cursor is di spl ayed to
indicate that execution was suspended. If the STOP key is pressed
again, execution is resumed. If the CTRL key is held down and the
STOP key is pressed, MSX-BAS IC stops executing the program and
returns to the direct mode with the following message.

Break in nnnn

The nnnn is the l ine number of the program that was being executed
when the execution was aborted.

2 .1 . 1 0 ERROR MESSAGES

If an e r ror is encountered during program execution, execution
terminates, and the appr opriate error message is displayed. Ref er
to 2 . 1 .17 for a compl ete l ist of MSX-BAS IC error codes and error
messages.

2 . 1 . 1 1 Commands and statements except those doing I/O

AUTO [< l ine number > [, <increment> J l
Automatically generates l ine numbe r s after each carr iage
return.

AUTO begins number ing at <l ine number> and increments each
subsequent l ine number by <increment > . The default for both
values is 1 0 . I f <l ine number > i s followed by a comma and
<increment> is not specified, the last incr ement specified in
an AUTO command is assumed.

If AUTO generates an existing l ine number , an asterisk is
printed after the line number as a w�rning that the existing
l ine will be replaced. If a ca r r 1age return is instead
immediately entered, the existing line is preserved and the
next l ine number i s generated.

The AUTO command is terminated by typing Control-C or Control
STOP, and MSX-BAS IC returns to the direct mode. The l ine being
input when Control-C i s typed is not saved.

OONT
Continues program execution after a BREAK or STOP.

DELETE I<l ine number >] [-<l ine number>]
Deletes program l ines.

BASIC alway s returns to the direct mode after
entered. If the <l ine number> does not exist,
function cal l' error occurs.

LIST I<l ine numbe r > l - I <l ine nurnber > l 1 1
Lists all or a pa r t of the program.

63

a DELETE is
an ' Il l egal

MSX BASIC REFERENCE GUIDE

If both <l ine number > parameters are omitted, the program is
l isted beginning at the lowest l ine number.

If only the fi rst <l ine numbe r > parameter is specified, only
that line is l isted.

·

If the fi rst <l ine numbe r> parameter and a "-" are specified,
that l ine and all l ines following i t are listed.

lf "-" and the second <l ine number> parameter are specified,
all lines beginning at the lowest line number are listed until
the specified number is reached.

If both <l ine numbe r > parameters are specified,
the range from the fi rst <line number> through
<l ine numbe r > are l isted.

the lines in
the second

The di splayed l isting can be terminated by holding down "CTRL11
and pressing the "STOP" key. The listing can be temporarily
suspended by pressing the "STOP" key, and resumed by pressing
the "STOP" key again.

LLIST (<l ine number> [- (<l ine numbe r > 1 1 1

NEW

Lists all or part of the program. on the printer, with the use
of the pa r ameters being identical for the LIST command.

Deletes the current program in memory and resets all variabl es.

RENUM ([<new numbe r>] [, [< old numbe r >] l , < increment> l 1 1
Renumbers program lines.

The <new numbe r > parameter is the f i r st l ine that will be used
in the renumbered program, with the default being 1 0 . The <old
numbe r > is the l ine of the current program where renumbe ring i s
t o begin, with the default being the first l ine of the program.
The <increment> is the increment used in renumbe ring, and the
default is 1 0 .

RENUM also changes all l ine number references following GOTO,
GOSUB, THEN, ELSE, ON . • GOTO, ON • • GOSUB and ERL statements to
reflect the new line numbers. If a nonexistent l ine number
appears after one of the above statements, an ' Undefined
l ine nnnn in mmmm • is displayed. The reference to the
incorrect line number (nnnn) is not changed by RENOM, but l ine
number mmmrn may be changed.

NOTE : RENUM can neither be used to change the order of program
lines (for example, entering RENUM 1 5 , 3 0 for a program hav ing
the three lines numbered 1 0 , 20 and 3 0) , nor can it be used to
generate l ine number s greater than 6552 9 . In either case, an
' Il l egal function call ' error results.

RON [<l ine number>]
Executes the curr ent program.

64

MSX BASIC REFERENCE GUIDE

Exe9ution begins at the first l ine of the program unl ess the
<line numbe r > parameter is specified, in which case, execution
begins at that l i ne.

T.RON/TROFF
Traces the execution of program statements.

The TRON statement can be executed i n either the direct or
indirect mode to print the line number being executed when the
program is RUN. The l ine number s are displayed within squa r e
brackets. The TRON function continues until a TROFF statement
or a NEW command is executed.

CLEAR [<string space> [, <highest addr e ss >)]
Sets all numeric variables to z ero, all string variables to
null, and closes all open files; and optionally sets the end of
memory.

The <string space > parameter sets the memory siz e allocated for
string variables, with the default being 200 bytes. The
<highest address> parameter sets the highest memory address to
be used by MSX-BAS IC.

DATA <l ist of constants>
Used to set the constants to be used by the program' s READ
statements.

DATA statements are not executable and they may be placed
anywhere in a program. If a DATA statement i s used to define
more than one constant, the constants must be del imited by
commas. The maximum number of constants that may be placed on
a logical l ine is l imited only by the siz e of the logical l ine .
READ statements replace the constants for the variables used by
the program in the sequence listed in the DATA statement (s) .

The <list of constants> may contain numeric constants in any
format: fixed point, floating point, or integer . Numeric
expressions are not allowed in DATA statements. String
constants may also be used in DATA statements. If the string
contains commas, colons, or signif icant leading or trail ing
space s, the string must be embedded in quotation marks.

The variable type required (numeric or string) required by a
READ statement must match the type specified in its DATA
statement. The RESTORE statement may be used to set the data to
be read f rom a specific l ine. If the RESTORE statement is not
used, the data is read from the program ' s first DATA statement.

DIM <list of subscripted variables>
Specifies the maximum siz e of array variables.

If no DIM statement is specified, the maximum siz e allocated in
memory for the array is 1 0 . If a subscript greater than the
maximum siz e i s used, a ' Subscript out of range' error occur s .
The subscripts always begin at 0 .

65

MSX BASIC REFERENCE GUIDE

DEFINT <range (s) of letters>
DEFSNG < r ange (s) of letters>
DEFDBL <range (s) of letters>
DEFSTR <range (s) of letters>

Declares the variable type to be intege r , single-precision,
double-pr ecision, or string.

The DEFINT/SNG/DBLI STR statements declare that variable names
beginning with the letter (s) specified will always be
that type of variable. An exception to this rule is when a
variable type decl aration character is used for a variable.
Section 2 . 1 . 5 lists the variable declaration characte rs.

DEF FN<name> [< <parameter list >) 1 =<function definition>
Defines and names a user-programmed function.

The <name> must be a legal variable name and is preceded by FN.
The <name> becomes the name of the defined function. The
<parameter list> comprises the variable names in the function
definition that are replaced when the function is called, and
they must be separated by commas. The <function def inition> i s
a n expression performing the function, and is l imited to t o one
l ine. Variable names appearing in the expression serve only to
define the function1 they do not affect program var iables
having the same name. The <parameter list> may have a variable
name used, and if so, the value of the variable i s suppl ied
when the function is called, otherwise, the current value of
the var iable is used.

The variables in the parameter l ist represent, on a one-to-one
basis, the argument variables or values that will be given in
the function cal l .

If the function specifies a variable type , the expression ' s
val ue takes on that type befor being returned to the call ing
statement. If the types specified in the function name and its
ar gument do not match, a ' Type mismatch' error occurs.

The DEFFN sta tement must be executed before the defined
function is used, if not, an ' Undefined user function' error
occurs. Note that DEFFN cannot be used in the direct mode.

DEFUSR [<digit>1 =<integer expression>
Specifies the entry point of a machine language subroutine.

The <digit> may be any digit from 0 to 9 , and cor responds to
the number of the USR routine whose address is being specified.
If <digit> i s omitted, DEFUSRO is assumed. The value of
<integer expression> is the entry point of the USR routine.

66

RSX BASIC REFERENCE GUIDE

DEFUSR statements may be reused as many times as necessary
within a program to redefine the entry points of subroutines.

ERASE <list of array variables>
El iminates array s f rom a program.

Arrays may be reDIMensioned after they are ERASEd, or the
previously allocated array space in memory may be used for
other purposes. If an attempt is made to reDIMension an array
without a prior ERAS E, a ' Redimensioned array' error occurs.

�D
Terminates program execution, closes all files and returns to
direct mode.

An END statement may be placed anywhere in a program to end its
execution. Unl ike STOP, the END statement does not cause a
BREAK message to be displayed. An END statement located at the
end of a program is optional.

ERROR <integer expression>
Simulates the occurrence of an error or allows error codes to
be defined by the user.

The value of <integer expression> must be greater than 0 and
less than 2 5 5 . If the value of <integer expression> equals an
error code al ready in use by BASIC, the ERROR sta tement will
simulate the occurr ence of that error, and the corresponding
error message will be printed.

To define an error code, use a value that is greater than that
used by BASIC. Section 2 . 1 . 1 7 lists the error codes and
messages. Use the highest available codes to maintain
compatibil ity in case more error codes are added to later
versions of BASIC. The new user-defined error code may then be
handled in an error trap routine. One such exampl e follows.

10 ON ERROR GOTO 1000

120 IF A$="Y" THEN ERROR 250

1000 IF ERR=250 THEN PRINT RSur e ? "

error
trap

an

If an ERROR statement specifyinge a code for which no
message is defined or an ERROR statement having no error
routine i s executed, MSX-BAS IC will respond with
' Unprintable error ' , and execution will be terminated.

67

MSX BASIC REFERENCE GUIDE

FOR <variable>=x TO y [STEP z 1

NEXT [<variable>] [, <variable> • • •]
Allows a series of instructions to be perf ormed in a loop a
given number of times.

The <variable> i s used as a counter for the FOR . • • NEXT loop.
It may be integer, singl e-pr ecision, or double-precision, where
x, y, and z are numeric expressions. The fi rst numeric
expression (x) is the initial value of the counter. The
second numeric expression (y) is the fi nal value of the
counter. The program l ines following the FOR statement are
executed until the NEXT statement is encountered. Then the
counter is incremented by the value of STEP. The value of
the counter is then compared with the final val ue (y) , and if
it is not greater, execution i s branched back to the statement
immediately following the FOR statement and the statements
within the loop are repeated. If the counter is exceeded,
execution continues with the statement following the NEXT
statement . If STEP is not specified, the default is one.

If STEP is negative, the final value of the counter must be
less than the initial value. The counter is decremented each
time through the loop, and the loop is executed until the
counter is less than the final value.

The loop is executed at least once if the initial value of the
loop times the sign of the step exceeds the final value times
the sign of the step.

FOR . • • NEXT loops may be nested, that is, a FOR . . • NEXT loop may
be placed within another FOR . • • NEXT loop. When loops are
nested, each loop must have a differ ent variable name for its
counter. The NEXT statement for the inside loop must appear
before the NEXT for the outside loop. If nested loops share
the same end point, a single NEXT statement may be used for all
of them. The depth of nesting of FOR • . • NEXT loops is l imited
only by the av ailable memory.

The variabl e (s) in the NEXT statement may be omitted, in which
case the NEXT statement will · match the most recent FOR
statement. If a NEXT statement is encountered before its
corresponding FOR statement , a ' NEXT without FOR' error message
is issued and execution is terminated.

GOSUB <l ine number >

RETURN l<l ine numbe r >]
Branches to the subroutine beginning at <line numbe r> and
returns from a subroutine.

The <line number > is the f i rst l ine of the subroutine. A
subroutine may be called any number of times in a program, and

68

KSX BASIC REFERENCE GUIDE

a subroutine may be called f r om within another subroutine.
Nesting of subroutines is l imited only by the available memory .

RETURN statements in subroutines cause BAS IC to branch back to
the statement following the most recent GOSUB statement . A
subroutine may contain more than one RETURN statement if it is
required by the program logic. Subroutines may be placed
anywhere in the program, but should be readily distinguishable
f rom the main program for greater understandability. To
prevent accidental entry into a subroutine, it may be preceded
by a STOP, END, or GOTO statement that directs program control
around the subroutine. Otherwise , a ' RETURN without GOSUB 1
error will occur and execution terminates.

GOTO <line numbe r>

IF

IF

Branches unconditionally out of the normal program sequence to
a specified <l ine numbe r > .

I f <l ine number> i s an executable statement, that statement and
those following are executed. If it is a nonexecutable
statement , execution proceeds at the first executable statement
encountered after <l ine numbe r > .

<expression> THEN <statement (s) l <l ine number>
[ELSE <statement (s) l <l ine number >]

<expression> GOTO <1 ine number>
[ELSE <statement (s) l <l ine number> l

Changes the prog ram flow
expression.

based on the result returned by an

If the result of <expression> i s not z ero, the THEN or GOTO
clause is executed. THEN may be followed by either a line
number for branching or one or more statements to be executed.
GOTO is always followed by a line number . If the result of
<expression> is z ero, the THEN or GOTO clause is ignored and
the EL SE clause, if present, is executed. Execution continues
with the next executable statement.

Exampl e :
A=l :B=2 -> A=B is zero (FALSE) .
A=2 : b=2 - > A=B is not zero <TRUE) .

IF . • • THEN . • • ELSE statements may be ne sted. Nesting is l imited
only by the l ength of the line. If the statement does not
contain the same number of ELSE and THEN clauses, each ELSE is
matched with the closest unmatched THEN. For exampl e, the
following statement will not print "A<>C" when A<>B.

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "A<>C"

The statement will print "A<>C" when A=B and B<>C.

I f an IF • . • THEN statement is followed by a line number in the

69

MSX BASIC REFERENCE GUIDE

direct mode, an ' Undefined l ine ' error results unless a
statement with the specified l ine number had previously been
entered in the indirect m6de .

INPUT [" <prompt string>" ; 1 < l ist of variables>
Allows input from the keyboard during program execution.

When an INPUT statement is encountered, program execution
pauses and a question mark i s printed to indicate that the
program is waiting for data. If a " <prompt string>" is
included, the str ing is printed before the question mark. The
required data is entered by the keyboard.

The data that is entered is assigned to the variabl e (s) given
in <variable list > . The number of data items suppl ied must be
the same as the number of variables in the list. The data
must be separated by commas.

The variables named in the <l ist of variables> may be numer i c
or string vari ables (including subscripted variables) . The
entered data type must agree with the type specified by the
variable name . Strings entered i n response INPUT statements do
not need to be embedded i n quotation marks.

If the wrong variable type is input (a string variable instead
of a numeric variable, etc. > , a "?Redo from star t " message is
displayed. No value i s assigned until an acceptable response
is given. An example of this follows.

list
1 0 INPUT "A and B " ;A , B
20 PRINT A+B
Ok
run
A and B ? 10 , 0 0
?Redo from start
A and B'? 1 0 , 2 0

30
Ok

If the response to the INPUT statement has too many items, an
"?Extra ignored" message i s displayed, and the next statement
is executed. One such example follows.

list
1 0 INPUT "A and B" ;A, B
20 PRINT A+B
Ok
run
A and B? 1 0 , 2 0 , 3 0
?Extra ignored

30
Ok

70

MSX BASIC REFERENCE GUIDE

Respo�ding to an INPUT statement with too few items causes two
question marks to be printed and a wait for the next data item.

Exampl e:
l ist
1 0 INPUT "A and B " ; A , B
2 0 PRINT A+B
Ok
run
A and
?? 20

B? 10 (The 10 was typed in by the use r >
<The 2 0 was typed i n by the user)

3 0
Ok

The program can be suspended at the INPUT statement by typing
Control-C or by holding down the "CTRL" key and pressing
"STOP•. MSX-BAS IC will return to the direct mode and respond

with nok" . To resume execution, type CONT.

LINE INPUT [" <pr ompt string>" ; J <str ing variable>
Inputs an entire line Cup to 2 5 4 characters> to a string
variable, without the use of delimiters.

The <prompt string> i s displayed on the console before input is
accepted. No question mark is printed unless it is a part of
the <prompt str ing> . All input typed to the console before a
car r iage return is assigned to <string variabl e > .

The program can be suspended at the LINE INPUT statement by
typing Control-C or by holding down the "CTRL" key and pressing
" STOP " . MSX-BAS IC will return to the direct mode and respond
with "Ok " . To resume execution, type CONT.

[LET] <variable>=<expression>
Assigns the value of an expression to a variable.

Note that the word LET is optional .

LPRINT [<l ist of expressions>)
LPRINT USING <string expression> ; < l ist of expressions>

Prints data on the line printer. (Refer to the PRINT and PRINT
USING statements below for details.)

MID$ (<str ing exp. 1 >) , n [, m)) =<string exp . 2 >
Replaces a portion of one string with another st ring.

The characters in <string exp . l > , beginning at position n, are
replaced by the characters in <string exp. 2 > . The optional m
refers to the number of characters from <string exp. 2 > that
will be used in the replacement. If m is omitted or incl uded,
the characters replaced does not go beyond the or iginal length
of <string exp. l > .

ON ERROR GOTO <l ine numbe r >
Enables error trapping and specifies the first l ine of the

71

MSX BASIC REFERENCE GUIDE

error handling subroutine.

Once error trapping has been enabled, all errors detected,
including direct mode errors (e . g . , Syntax error s) , will cause
a j ump to the specified error handling subroutine. If <l ine
number> does not exist, an ' Undefined l ine number ' error
occurs. To disable error trapping, execute an ON ERROR GOTO 0 .
Subsequent errors will then display error messages and hal t
execution. An ON ERROR GOTO 0 statement appea ring in an error
trapping subroutine will cause BAS IC to stop and displ ay the
error message for the err or that caused the trap. It i s
recommended that all error trapping subroutines execute an
ON ERROR GOTO 0 if an er ror is encountered for which there i s
no recovery action.

If an error occurs dur ing execution of an error handl ing
subroutine, the BASIC error message is printed and execution
terminates. Error trapping does not occur witnin the error
handling subroutine.

ON <expression> GOTO <list of line numbe rs>
ON <expression> GOSUB <l ist of line numbers>

Branches to one of several specified l ine numbers, depending
on the value returned when an expression is evaluated. The
value of <expression> determines which l ine number in the l ist
will be used for branching. For exampl e, if the value is
three, the third l ine number in the l ist will be the
destination of the branch. If the val ue is not an integer ,
the fracti onal portion is discarded.)

In the ON • • • GOSUB statement, each l ine number in the l ist must
be the fi rst l ine number of a subroutine.

If the value of <expression> i s either zer o or is greater than
the number of items in the l ist (and <= 255) , MSX-BAS IC
continues with the next executable statement. If the value of
<expression> i s either negative or is greater than 2 5 5 , an
' Ill egal function cal l ' error occurs.

POKE <memory address> , < integer expression>
Writes a <decimal) byte to a <decimal) memory location.

The <memory address> i s the address of the memory location to
be written to (POKEd) . The <integer expression> is the data
(byte) to be POKEd. It must be in the range 0 to 255 . The
<memory address> must be in the range -327 6 8 to 6553 5 . I f this
value is negative, the address is computed by subtraction f rom
6553 6 . For exampl e, a -1 i s the same as 65535 (6 5536-1=6553 5) .
Otherw ise , an ' Overflow' error occurs.

PRINT [<l ist of expressions>]
Displays data to the consol e .

I f the
printed.

<l ist of expressions> is omitted, a blank l ine is
If the <list of expressions> is included, the values

72

MSX BASIC REFERENCE GUIDE

of the expressions are di splayed on the consol e . An expression
in the li st may be a numeric and/or a string expression.
Strings must be enclosed in quotation marks.

The position of each displayed item is determined by the
punctuation used to separate the items in the l ist . MSX-BAS IC
divides the l ine into print zones of 1 4 spaces each. In the
<list of express ions > , a comma causes the next value to be
di splayed at the beginning of the next zone. A semicolon
causes the next value to be displayed immediately after the
last val ue. One or more spaces between the expressions are
treated as semicolons.

If a comma or a semicolon terminates the <l ist of expressions> ,
the next PRINT statement begins printing on the same l ine,
spacing accordingly. If the <l ist of expressions> terminates
without a comma or a semicolon, a carriage return is printed at
the end of the line . If the printed l ine is longer than the
console width, MSX-BAS IC goes to the next phy sical l ine and
continues printing.

A displayed number is always followed by a space . Positive
numbers are preceded by a space . Negative number s are preceded
by a minus sign.

A question mark may be used instead of the word PRINT.

PRINT USING <string expression> ; <l ist of expressions>
Di splays str ings or numerics using a specified format.

The <l ist of expressions> is compr ised of the st r ing
expressions or numeric expressions that are to be printed,
separated by semicolons. The <string expression> is a string
l iteral <or variable) comprising special formatting characters.
These formatting characters (see below) determine the field and
the format of the printed strings or numbers.

When PRINT USING is used to print strings, one of the following
three formatting characters may be used to format the string
f ield :

" ! "

Specifies that only the first character in the given string is
to be printed.

Exampl e :
A$="Japan"
Ok
PRINT USING " l " ;A$
J
Ok

" & n spaces & " (Japanese. Refer to 5 . 4 for other versions.)

73

MSX BASIC REFERENCE GUIDE

Specifies that 2 +n characters from the string are to be printed.
If the ' & ' signs are typed with no spaces, two characters will
be printed; with one space three characters will be printed,
and so on. If the string is longer than the field, the extra
characters are ignored. If the field is longer than the string,
the string wil l be left-justif ied in the field and padded with
spaces on the right.

Example :
A $="J apan"
Ok
PRINT USING "& &" ;A$
Japa
Ok

" @• (Japanese. Refer to 5 . 4 for other versions. >

Specifies that the whole character in the given string is to
be printed.

Exampl e :
A$=" Japan"
Ok
PRINT USING "I love @ very much . " ; A$
I love Japan very much .
Ok

When PRINT USING is used to print numbers, the following special
characters may be used to format the numeric field:

" # It

A number sign is used to represent each digit position. The
digit positions are always fi lled. If the number to be printed
has fewer digits than positions specified, the number will be
right-justified (pr eceded by spaces) in the field.

A decimal point may be inserted at any position in the field.
If the format string specifies that a digit is to precede the
decimal point, the digit will always be printed <as 0 if
necessary) . Numbe rs are rounded as necessary.

Exampl e:
PRINT USING "#t t . t t " ; l 0 . 2 ,2 , 3 . 4 5 6 , . 2 4

1 0 . 2 0 2 . 0 0 3 . 46 0 . 2 4
Ok

" +"

A plus sign at the beginning or end of the format string will
cause the sign of the number (plus or minus) to be printed
before or after the numbe r .

Exampl e:

74

MSX BASIC REFERENCE GUIDE

PRINT USING 11+### . # # " ; 1 . 2 5 , - 1 . 2 5
+1 . 2 5 -1 . 2 5

Ok
PRINT USING 111#4 . ##+" ; 1 . 2 5 , - 1 . 2 5

1 . 25+ 1 . 25-
0k

·· -"

A minus sign at the end of the format f ield w il l cause negative
numbe r s to be printed w ith a trail ing minus sign.

Exampl e :
PRINT USING " i # # . ##-" ; 1 . 25 ,-1 . 2 5

1 . 25 1 . 25-
0k

II * * "

A double asterisk at the beginning of the format str ing causes
leading spaces in the numeric f i eld to be filled w ith asterisks.
The ** also speci fies positions for two or more digits.

Exampl e :
PRINT US ING " * * # . ## " ; 1 . 2 5 , - 1 . 2 5
**1 .25*-1.25
Ok

11¥¥11 (Japane se . Refer to 5 . 4 for other versions .)

A double yen sign causes a yen sign to be printed to the
immediate left of the formatted numbe r. The ¥¥ speci f i es two
more di git positions, one of which i s the yen sign. The
exponential format cannot be used w ith ¥¥. Negative numbers
cannot be used unless the minus sign trails to the right.

Exampl e :
PRINT US ING 11¥¥ U :It . # # " ; 12 .3 5 , - 1 2 . 3 5

¥1 2 . 3 5 -¥1 2 . 3 5
Ok
PRINT USING "¥¥# # # . ##- 11 ; 12 . 3 5 , -12 . 3 5

¥12 . 3 5 ¥ 1 2 . 3 5-
0k

"* *¥" (Japanase. Refer to 5 . 4 for other versions .)

The **¥ at the beginning of a format string combines the
effects of the above two symbols. Leading spaces w ill be
f illed w ith asteris ks and a yen sign w il l be printed before the
number. * * ¥ specif ies three more digit positions, one of which
is the yen sign.

Exarnpl e:
PRINT USING " * * ¥# . # 4 " ; 12 . 3 5
*¥12 . 3 5

75

MSX BASIC REFERENCE GUIDE

Ok

" n
,

A comma that is to the left
formatting string causes a comma
every third digit to the left
that is at the end of the format
the str i ng. A comma specifies
comma has no ef fect if used with

Exampl e :
PRINT USING " # # # # , . # # " � 12 3 4 . 5
1 , 2 3 4 . 5 0
Ok
PRINT USING "### # . ## , " ; 1 2 3 4 . 5
12 3 4 . 5 0 ,
Ok

of the decimal point in a
to be printed to the left of
of the decimal point. A comma
string i s printed as part of

another digit position. The
the exponential format.

Four carats may be placed after the digit position characters
to specify exponential format. The four carats allow space for
E+xx to be pr inted. Any decimal po i nt posi tion may be
specified. The significant digits are left-justified, and the
exponent i s adj usted. Unless a leading + or trail ing + or - is
speci fied, one digit position will be used to the left of the
decimal point to print a space or minus sign.

Exampl e :
PRINT USING " # L U " "' "' "' " ; 23 4 . 5 6

2 . 3 5E+02
Ok
PRINT USING " i . i t "' "' "' "'- " � -12 . 3 4
1 . 2 3 E+01-
0k
PRINT US ING " +t . #t� "' "' � " ; l 2 . 3 4 , -1 2 . 3 4
+1 . 2 3 E+Ol-1 . 2 3 E+Ol
Ok

" % "

If the number to be pr i nted i s larger than the speci f ied
numer i c f ield, a percent sign is printed i n front of the number.
Also, if rounding causes the number to exceed the f ield, a
percent sign will be pr inted in f r ont of the rounded numbe r .

Exampl e :
PRINT USING " # # . ## " ; 123 . 4 5
%123 . 45
Ok
PRINT USING " . ## " ; . 99 9
% 1 . 0 0
Ok

76

MSX BASIC REFERENCE GUIDE

If the number of digits specified exceed 24, an ' I llegal
function call ' error will result.

READ <l ist of variables>
Reads values from a DATA statement and assigns them to
variables.

A READ statement must always be used in conj unction with a DATA
statement. READ statements assign var�ables to DATA statement
values on a one-to- one basis. READ statement variables may be
numeric or string, and the values read must agree with the
variable types specified. If they do not agree, a ' Syntax
error ' will resul t.

A single READ statement may access one or more DATA statements
(they will be accessed in order) , or several READ statements

may access the same DATA statement. If the number of variables
in <l ist of variables> exceeds the number of elements in the
DATA statement (s) , an ' Out of DATA' error will resul t. If the
number of variables specif ied is fewer than the number of
elements in the DATA statement (s) , subsequent READ statements
w il l begin reading data at the f i rst unread element. If there
are no subsequent READ statement s, the extra data is ignored.

To reread DATA statements f rom the start, use the RESTORE
statement.

REM <remark>
Allows explanatory remarks to be inserted in a program.

REM statements are not executed but are output exactly as
entered when the program is l isted.

REM statements may be branched to (f rom a GOTO or GOSUB
statement > , and execution will continue with the f i r st
executable statement after the REM statement.

Remarks may be added to the end of a l ine by preceding the
remark with a single quotation mark instead of :REM.

Do not use the above in a DATA statement as it would be
considered legal data.

RESTORE [<l ine numbe r >]
Allows DATA statements t o be reread f r om a specified l ine.

After a RESTORE statement is executed, the next READ statement
accesses the first item in the first DATA statement in the
program. If <line numbe r > is specif ied, the next READ statement
accesses the first item in the specif ied DATA statement . If
a none xistent line number i s specified, an ' Undefined Line
numbe r ' error will result.

77

MSX BASIC REFERENCE GUIDE

RESUME
RESUME 0
RESUME NEXT
RESUME < l ine numbe r>

Continues program execution after an error recovery procedure
has been performed.

Any one of the four formats shown below may be used, depending
upon where execution is to resume :

RESUME or RESUME 0
Execution resumes at the statement which caused the error.

RESUME NEXT
Execution resumes at the statement immediately fol l owing the
one which caused the error.

RESUME <l ine numbe r >
Execution resumes at <line number>

A RESUME statement that i s not in an error trap subroutine
causes a ' RESUME without ' error.

sroP
Terminates program execution and returns to command l evel .

A STOP statement may be used anywhere in a program to terminate
execution. When a STOP statement is encountered, the following
message i s printed:

Break in nnnn (nnnn is a line number)

Unlike the END statement, the STOP statement does not close
f iles.

Execution is reswned by issuing a CONT command.

SWAP <variable>, <variable>
Exchanges the values of two variabl es.

Any type of variable may be SWAPped (integer , single-precision,
double-precision, string) , but the two variables must be of
the same type, or a ' Type mismatch' error resul t s .

78

KSX BASIC REFERENCE GUIDE

2 . 1 . 1 2 Functions except those doing I/O

ABS (X)
Returns the absolute value of the expression x .

ASC(X$)
Returns a numerical val ue that i s the ASCII code of the fi rst
character of the string X $. I f X$. i s null, a ' Il l egal function
call ' error is returned.

ATN (X)
Returns the arctangent of X in radians. Result is in the range
-pi/ 2 to pi/ 2 . The expression X may be any numeric type, but
the evaluation of ATN is alway s pe rformed in double precision.

BIN$ (n)
Returns
decimal
-3 27 6 8
used.

CDBL (X)

a str ing which represents the binary value of the
argument. The numeric expr ession, n, must be between

and 65535. I f n i s negative, the two ' s compl ement is
That is, BIN $ (-n) is the same as B IN $ (65536-n) .

Converts X to a double precision numbe r .

ClR$ (I)
Returns
OiR$ i s
console.

CINT (X)

a string whose one element is the ASCII code for I.
commonly used to send a special character to the

Converts X to an integer number by truncating the fractional
portion. If X is not between -32768 and 32767 , an • overflow•
error occurs.

<X>S (X)
Returns the cosine of X in radians.
double precision.

CSNG C X)

COS (X) is calculated to

Conv erts X to a single precision numbe r .

CSRLIN
Returns the vertical coordinate of the cursor.

ERL/ERR
The ERR and ERL var i ables are usually used in IF-THEN
statements to direct program flow in the error trap routine.
When an error handling subroutine is entered, the variable ERR
contains the error code for error, and the variable ERL contains
the line number of the line in which the error was detected.

If the statement that caused the error was a direct mode

79

MSX BASIC REFERENCE GUIDE

statement , ERL will contain 6553 5 . To test if an error occurred
in a direct statement, use the following statement.

IF 65535=ERL THEN . . • • •

Otherw ise , use the follow ing statements.

IF ERL=<l ine numbe r > THEN
IF ERR=<error code> TH EN • . . •

Because ERL and ERR are reserved variables, neither may appear
to the left of the equal s sign in a LET <assignment) statement.

EXP (X)
Returns e to the pow er of X. X must be <=145 . 0 6 2 86085 86 2 . If
EXP overflows, the • Overflow• error message is printed.

FIX(X)
Returns the integer part of X (fraction tr uncated) . FI X (X) is
equival ent to SGN(X) * INT(AB S (X)) . The maj or difference between
FIX and INT is that FIX does not return the next lower number
for negative X.

FRE (0)
FRE (II ")

Arguments to FRE are dummy arguments. FRE returns the number
of bytes i n memory not being used by BASIC.

FRE (O) returns the number
for BAS IC programs, text
f iles. FRE (" 11) returns
string space.

HEX $ (X)

of by tes in memory which can be used
files, and machine language program

the number of bytes in memory for

Returns a string which represents the hexadecimal value of the
decimal argument. The numeric expression, n, must be between
-32768 and 6553 5 . If n i s negative, the two ' s complement form
is used. That is, HEX$ (-n) is the same as HEX$ (65536-n) .

INKEY$
Returns either a one-character string containing a character
read f rom the keyboard or a null string i f no key is pressed.
No characters will be echoed and all characters are passed
thr ough to the program, except for Control- STOP, which
terminates the program.

INPUT$ (X)
Returns a string of X characters, read f r om the keyboard. No
character will be echoed and all characters are passed through,
except for Control- STOP, which terminates the program .

INSTR ([I , 1 X $, Y$)
Searches for the fi rst occurrence of string Y$
returns the position at which the match i s found.

80

i n X $ and
the optional

RSX BASIC REFERENCE GUIDE

offset I sets the position for starting the search. I must be
in the range 0 to 2 5 5 . I f I>LEN (X $) or if X$ i s null o r if Y$
cannot be found or if X $ and Y$ are null , INSTR returns 0 . If
only Y$ i s null, INSTR returns I or 1 . X$ and Y$ may be
string variables, string expressions, or string l iterals.

INT (X)
Returns the largest integer <=X.

LEFT $ (X $, I)
Returns a str ing compr ising
I must be in the range 0 to
the ent i re string (X$) is
< length zero) is returned.

LEN (X$)

the leftmost I cha racters of X $.
2 5 5 . I f I i s greater than LEN (X $) ,
returned. If I==O , a null string

Returns the number of cha racters in X $. Nonpr inting characters
and blanks are counted.

LOO (X)
Returns the natural logari thm of X, X being greater than z ero.

LPOS (X)
Returns the current position of the line printer print head
within the l ine printer buffer, not necessarily giving the
physical position of the print head. X i s a dummy argument.

MI D $ (X $, I [,J])
Returns a string of length J characters f rom X$ beginning with
the Ith characte r . I and J must be in the r ange 1 to 2 5 5 . If
J is omitted or if there are fewer than J characters to the
right of the Ith character, all rightmost characters beginning
with the Ith character are returned. If I>LEN (X $) , MID$
returns a null string.

OCT $ (n)
Returns a string which represents the octal value of the
decimal argument.

The numer ic expression, n, must be between -327 6 8 and 6553 5 . If
n is negative, the two ' s complement form is used, for exampl e,
OCT $ {-n) is the same as OCT $ (65536-n) .

PEEK (I)
Returns the byte (decimal integer in the range 0 to 2 5 5) read
f rom memory location I . I must be in the range - 3 27 6 8 t o 6553 5 .
PEEK is the compl ementary function t o the POKE statement .

POS (I)
Returns the current cursor position.
0 . I i s a dummy argument .

RIGHT$ (X $, I)

The leftmost position is

Returns the rightmost I cha·racters of string X $. If I==LEN (X $) ,
return X $. If I=O , a null string < l ength zero> is returned.

81

MSX BASIC REFERENCE GUIDE

RND (X)
Returns a random number between 0 and 1. The same sequence of
random number is generated each time the program is RUN. If
X< O , the random generator is reseeded for any given X. X=O
repeats the last number generated. X>O generates the next
random number in the sequence.

SG N (X)
Returns 1 (for X>O) , 0 (for X=O) , - 1 (fo r X<O) .

SIN (X)
Returns the sine of X in radians.
doubl e-precision.

SPACE $ (X)

SIN (X) i s calculated to

Returns the string of spaces of length x. The expression X
discards the f ractional portion and must be range 0 to 2 5 5 .

SPC (I)
Prints I blanks on the screen. SPC may only be used with PRINT
and LPRINT statements. I must be in the range 0 to 2 5 5 .

SQR(X)
Returns the square root of x . X must be >=0 .

STR$ (X)
Returns a string representation of the value of x.

STRING $ (I , J)
STRING $ (I , X$)

Returns a
code J or

TAB (I)

string of length I whose characters all have ASCII
the f irst character of the string X $.

Spaces to position I on the consol e. If the current print
position is al ready beyond space I, TAB does nothing. Space
0 is the leftmost position, and the rightmost position is the
width minus one. I must be in the range 0 to 255. TAB may only
be used with PRINT and LPRINT statements.

TAN (X)
Returns the tangent o f X i n radians. TAN (X) is calculated to
double precision. If TAN overf lows, an • ov erflow' error will
occur.

USR [<digit>1 (X)
Calls the user ' s assembly language subroutine with the ar gument
x. <digit> i s in the range 0 to 9 and co rresponds to the digit
suppl ied w ith the DEFUSR statement for that routine. If <digit>
is omitted, USRO is assumed.

VAL (X $)
Returns the numerical value of the string X $. The VAL function
also strips leading blanks, tabs , and linef eeds f r om the

82

MSX BASIC REFERENCE GUIDE

argument string. The following is an example .

PRINT VAL (" -7 ")
-7
Ok

VARPTR (<variable name>)
VARPTR < i <fil e number > >

Returns the address of the fi rst byte o f data identi fied with
<variable name>. A value must be assigned to <variable name>
prior to execution of VARPTR. Otherw ise, an ' Illegal function
cal l ' error results. Any type of var i able name may be used
<numeric, string, array) , and the address returned will be
an integer in the range -32768 to 32767 . If a negative address
is returned, add it to 65536 to obtain the actual address.

VARPTR is usually used to obtain the address of a variable or
array so it may be passed t o a machine language subroutine.
A f unction call of the form VARPTR (A (Q)) is usually specified
when passing an ar ray, so that the lowest-address element of
the a r r ay is returned.

All simpl e variabl es should be assigned before calling VARPTR
for an array because the address of the arrays change whenever
a new simpl e var i able is assigned. If i<file number> i s
specified, VARPTR returns the starting address o f the f ile
control block.

83

MSX BASIC REFERENCE GUIDE

Expanded Statements and Functions for MSX ---

2 . 1 .13 Device Specific Statements

SCREEN [<mode>l l , <sprite size>] l , <key click switch>]
[, < cassette baud rate>] (, <printer opt ion>]

Assigns the screen mode , sprite siz e, key cl ick, cassette baud
rate, and printer opt ion.

<mode> should be set to 0 to select 40 x24 text mode, I to
select 3 2 x24 text mode, 2 to select high resolution mode , 3
to select multi-color <l ow- resolution mode) .

0 : 40x2 4 , text mode
1 : 32x24, text mode
2 : high- resolution mode
3 : multi-color mode

<sprite size> determines the size of sprite. Shoul d be set to
0 to select Bx8 unmagnified sprites, 1 to sel ect 8x8 magnif ied
sprites, 2 to select 16xl6 unmagnified sprites, 3 to select
l6xl6 magnified sprites. NOTE : If <sprite size> is speci fied,
the contents of SPRITE$ will be cleared.

0 : 8x 8, unmagnif ied
1 : 8x8, magni f i ed
2 : l6xl6 , unmagnified
3: 16xl6 , magnified

<key cl ick switch> determines whether to enable or disable the
key cl ick. Should be set to 0 to disable it.

0 : disable key click
non- zero: enable key cl ick

Note that in text mode, all graphics statements except ' PUT
SPRITE' generate an ' Ill egal function cal l ' error. Note also
that the mode is forced to text mode when an ' INPUT' statement
i s encountered or BASIC returns to command l evel .

<cassette baud rate> determines the default baud rate for
succeeding write operations, 1 for 1200 baud, and 2 for 2 400
baud. The baud rate can also be determined using CSAVE command
w ith baud rate option.

Note that when reading cassette, the baud rate is automatically
determined, so that users do not need to know the baud rate
the cassette i s wri tten. <printer option> determines if the
printer in operation is ' MSX pr inte r ' (which has ' graphics
symbol ' and ' Hi ragana ' capabil ity) or not. Should be non-0 if
the printer does not have such capability. In this case,

84

MSX BASIC REFERENCE GUIDE

graphics symbols are converted to spaces, and
are converted to Katakana in the Japanese version.

WIDTH <width of screen in text mode>

Hiragana

Sets the width of the di splay during text mode. Val id values
are 1 to 4 0 in 40 x24 text mode, and 1 to 32 in 32x24 text mode.

CLS
Clears the screen. Val id in all screen modes.

LOCATE l<x>l [, <y>l l , < cursor d isplay switch>]
Locates character the position for PRINT. <cursor display
sw itch> can be specified only in text mode.

0 : Disable the cursor di spl ay
1 : Enable the cursor di splay

COLOR [<foreground color >) [, <background color >] [, <border color>]
Defines the color, the default being 15 , 4 , 7 in the Japanese
version. Refer to 5 . 4 for other versions. The argument can be
in the range of 0 to 1 5 . The color correspondences follow.

0 Transparent
1 Black
2 Medium green
3 Light green
4 Dark blue
5 Light blue
6 Dark red
7 Cyan
8 Medium red
9 Light red
10 Dark yellow
11 Light yellow
1 2 Dark green
13 Magenta
1 4 Gray
15 White

PUT SPRITE <sprite plane nurnber> [, <coordinate specif ier >]
[, <color>] [, <pattern number>l

Sets up sprite attributes.

<sprite plane number> may range from 0 to 3 1 .

<coordinates specifier> always ca come in one of two forms:

STEP (x offset, y offset) o r
(absolute x , absol ute y)

The fi rst form is a point relative to the most recent point
referenced. The second, more common, form is directly refers
to a point without regard to the last point referenced.
The follwing are some exampl es.

85

MSX BASIC REFERENCE GUIDE

(1 0 ,1 0)
STEP (10 , 0)
(0 , 0)

absolute form
offset 1 0 in x and 0 in y
or igin

Note that when BAS IC scans coordinate values it w il l allow them
to be beyond the edge of the screen, however values outside the
integer range (-327 6 8 to 3 27 6 7 } will cause an overflow error.
And the values outside of the screen will be substituted w i th
the nea rest possible value. For exampl e, 0 for any negative
coordinate specification.

Note that (0 , 0) is always the upper left- hand corne r . Although
number ing y at the top causes the bottom left corner to be
(0 , 1 91) in both high- and medium- resolution, this i s standard.

The above description can be
coordinates are used.

appl ied wherever graphic

The X coordinate <x> may range from - 3 2 to 255 . The Y
coordinate <y> may range f r om -32 to 191 . If 2 0 8 (&HDO) i s
given to <y> , all sprite planes behind di sappears until a value
other than 2 0 8 is given to that plane. If 2 0 9 (&HDl) is
specified to <y> , that spr ite disappears from the screen.
Refer to the VDP manual for further details.

When a field is omitted, the current value is used. At start
up, the color defaults to the current foreground color .

<pattern number> specifies the pattern of spr ite, and must be
less than 256 when siz e of sprites if 0 or 1 , and must be less
than 64 when the siz e of sprites is 2 or 3 . <pattern number>
defaults to the <sprite plane number>. See also the SCREEN
statement and the SPRITE $ variable.

CIRCLE <coordinate specifier > , < radius > [, <col or>l
[, < start angl e>] £ , <end angle>l £ , <aspect ratio>]

Draws an ell ipse with a center and radius as indicated by the
f i rst o f its ar guments .

<coordinate specifier> specifies the coordinate of the center
of the circle on the screen. For details on <coordinate
specifier>, see the description of the PUT SPRITE statement .

The <color> defaults to foregr ound col or .

The <start angle> and <end angle> parameters are radian
ar guments between 0 and 2*PI which allow you to specify where
drawing of the ell ipse will begin and end. If the start or end
angle is negative, the ell ipse will be connected to the center
point with a l ine, and the angles will be treated as if they
were positive. Note that this is different than adding 2*PI.

The <aspect ratio> is for horiz ontal and vertical ratio of the
ell ipse.

86

MSX BASIC REFERENCE GUIDE

DRAW <string expression>
Draws figure according to the graphic macro language.

The graphic macro language commands are contained in the string
expression string. The string defines an object, drawn when
BASIC executes the DRAW statement. During execution, BAS IC ex
amines the value of string and interprets single-letter com
mands f rom the contents of the string. These commands are des
cribed in detail below:

The following movement commands begin movement from the last
point referenced. After each command, last point refer enced
i s the last point the command draws.

u n Moves up
D n Moves down
L n Moves left
R n Moves right
E n Moves diagonally up and right
F n Moves diagonally down and right
G n Moves diagonally down and left
H n Moves diagonally up and left

The n in each of the preceding commands indicates the di stance
to move. The number of points moved is n times the sealing
factor set by

M x , y

the s command.

Moves absol ute or relative. If x has a plus
sign (+) or a minus sign (-) in front of it, it
is relative. Otherw ise, it is absolute.

The aspect ratio of the screen is 1 . Thus, 8 horizontal points
are equal to 8 vertical points.

The following two prefix commands may precede any of the above
movement commands.

B Moves, but doesn1 t plot any points.
N Moves, but returns to the original position

when finished.

The following commands are also available :

A n Sets angle n. n may range f rom 0 to 3 , where
0 is 0 degrees, 1 is 9 0 , 2 is 180 , and 3 i s 2 7 0 .

C n Sets color n, being between 0 and 1 5 .

87

MSX BASIC REFERENCE GUIDE

s n Sets the scale factor, n being betwen 0 and 255 .
The scale factor i s n/4 . For exampl e, if n = � ,
the scale factor i s 1/ 4 . The scale factor l S
multiplied by the distance given with U , D, L , R, E,
F , G , and H; and relative M commands give the dis
tance moved. The default value is 0 , meaning ' no
(i . e. , it is the same a s S4) .

X<string variable>:
Executes substring. This allows you to execute
a second string fr om within a string.

Example A$="UBOR80DBOL80" :DRAW "XA $; "
->Draws a square

In all of these commands, the n, x, or y argument can be a
constant li ke 123 or it can be • = <variabl e> ; • where <variable>
is the name of a numeric variable. The semicolon (;) i's
required if the variable i s used this way, or in the X command.
Otherw ise , a semicolon i s optional between commands. Spaces
are ignored in string. For exampl e, variables in a move com
mand i n this way :

Xl=40 :X2=50
DRAW "M+=xl; , -=X2"

The X command can be a very useful part of DRAW, because you
can define a part of an object separate f rom the entire object
and also can use X to draw a string of commanos more than 255
characters long.

LINE [<coordinate specifier>l -<coordinate specifier > [, <colo r > l
[, < B IBF>]

Draws a l ine connecting the two specified coordinate. For the
details on the <coordinate specifier > , see the description of
the PUT SPRITE statement .

If ' B ' is specified, a rectangle is drawn. If 1 BF1 is speci
fi ed, the rectangle is f illed.

PAINT <coordinate specifi er > [, <paint col or>] [, <border color > l
Fills i n a bordered f i gure with the specif i ed fill color f r om
the <coordinate specifie r > . See the description on PUT SPRITE
for details of the <coordinate specifier > . The PAINT statement
does not allow <coordinate specifier> to be off the screen.

Note that PAINT must
graphics, border can be
high-resolution graphics
the border color .

not have a border for high-resolution
specified only in multicolor mode . In
mode, the paint color is regarded as

PSET<coordinate specifier> l , <col or>J
PRESET<coordinate specifier > f , <col or>l

88

KSX BASIC REFERENCE GOlDE

Sets/resets the specif ied coordinate. For details of the
<coordinate specifier>, see the description on PUT SPRITE.

The only difference between PSET and PRESET is that if no
<color> is given in PRESET statement, the background color is
selected. When a <color> argument is given, PRESET is
identical to PSET.

KEY <f unction key i > , <string expression>
Sets a string to specif ied function key. <function key # >
must be in the range 1 to 1 0 . <string expression> must be
within 1 5 characters.

Exampl e :

ICEY L IS T

KEY l , "PRINT TIME$" +CHR$ (1 3)
A$="Japan"
KEY 2 , A$

L ists the contents of all function keys.

Exampl e :
KEY LIST
color
auto
go to
l ist
run
color 1 5 , 7 , 7
cload"
cont
l ist •

run
Ok

"color" corr esponds to key "f l " , "auto" wi th "£2 " , "goto" w i th
"f3 " , and so on. Position in the l ist reflects the key
assignments. Note that control characters assigned to function
keys are converted to spaces.

KEY ON IO FF
Turns on/off function key di splay on 2 4 th line of text screen.

ON KEY GOSUB <l ist of line numbe rs>
Sets up a line numbe rs for BAS IC to trap to when the function
keys is pressed.

Example :
ON KEY GOSUB 1 0 0 , 2 0 0 , , 4 0 0 , ,500

When a trap occurs, an automatic KEY (n) STOP i s executed so
receive traps can never take place. The RETURN from the trap
routine will automatically do a KEY (n)ON unl ess an explicit
KEY (n) OFF has been performed inside the trap routine.

89

MSX BASIC REFERENCE GUIDE

Event trapping does not take place when BASIC is not executing
a program. When an error trap (r esulting f r om an ON ERROR
statement) takes place this automatically di sabl es all trapping
(including ERROR, STRIG, STOP, SPRITE, INTERVAL and KEY) .

KEY (<function key t>) ON/OFF/ STOP
Activates/deactivates trapping of the specified function key
i n a BASIC program.

A KEY (n)ON statement must be executed to activate trapping of
function key. After a KEY (n)ON statement, if a l ine number is
specif ied in the ON KEY GOSUB statement then every time BAS IC
starts a new statement it will check to see if the specified
key was pressed. If so, it will perform a GOSUB to the l ine
number specif ied in the ON KEY GOSUB statement.

If a
place

KEY {n)OFF sta tement has been executed, no tr apping takes
and the event is ignored.

If a KEY C n > STOP statement has been executed, no trapping w ill
take place, but if the specif ied key is pressed, this is
remembered so trapping is done if KEY (n)ON is executed.

KEY (n)ON does not affect the function key assignments displayed
at the bottom of the consol e.

ON STRIG GOSUB < l ist of line numbers>
Sets up a l ine number s for BASIC to trap to when the trigger
button is pressed.

Exampl e :
ON STRIG GOSUB , 2 00 , , 40 0

When the trap occurs an automatic STRIG (n) S TOP i s executed so
receive traps can never take place. The RETURN from the trap
routine will automatically do a STRIG (n)ON unless an expl icit
STRIG (n} OFF has been performed inside the trap routine.

Event trapping does not take place when BASIC is not executing
a program. When an error trap (r esulting fr om an ON ERROR
statement) takes place, all trapping < including ERROR, STRIG ,
STOP, SPRITE, INTERVAL and KEY} is automatically disabled.

STRIG (<n>) ON/OFF/ STOP
Activates or deactivates tr apping of j oystic trigger buttons in
BASIC programs.

<n> can be between 0 and 4. If <n> = 0, the space bar is used
for a trigger button. If <n> is either 1 or 3 , the trigger of a
j oystick 1 is used. When <n> i s ei ther 2 or 4 , joystick 2 is
used.

A STRIG (n)ON statement must be executed to activate trapping

90

MSX BASIC REFERENCE GUIDE

of the trigger button. After an STRIG (n) ON statement is execu
ted, if a l ine number is specified in the ON STRIG GOSUB state
ment, then every time BASIC starts a new statement , it wi ll
check to see if the trigger button was pressed. If so, it will
perform a GOSUB to the l i ne number specified i n the ON STRIG
GOSUB statement.

If a STRIG (n) OFF statement has been executed, no trapping takes
place and the event i s not remembered even if it does take
place.

If a STRIG (n) STOP
take place, but
remembe red so an
i s executed.

statement has been executed, no trapping w ill
if the trigger button is pressed this is

immediate trap will take place when STRIG (n)ON

ON STOP GOSUB <l ine number>
Sets up a line numbers for BAS IC to trap to when the Control
STOP key is pressed.

When the trap occurs, the STOP STOP statement i s executed so
receive traps can never take place. The RETURN f rom the trap
routine will automatically do a STOP ON unless an expl icit STOP
OFF has been performed inside the trap routine.

Event trapping does not take place when BAS IC is not executing
a program. When an error trap (r esulting f rom an ON ERROR
statement) takes place, all trapping < including ERROR, STOP,
STRIG , SPRITE, INTERVAL and KEY) a r e automatically disabled.

Use caution when using this statement. For exampl e, the follo
wing program cannot be aborted, and the only way out is to
reset the system !

10 ON STOP GOSUB 40
20 STOP ON
3 0 GOTO 3 0
40 RETURN

STOP ON/OFF/ STOP
Activates/deactivates trapping of control-STOP.

A STOP ON statement must be executed to activate trapping of
a control- STOP. After STOP ON statement , if a 1 ine number is
specif ied in the ON STOP GOSUB statement, then every time BASIC
starts a new statement, it will check to see i f a control- STOP
was pressed. If so, it will perform a GOSUB to the l ine number
speci f i ed i n the ON STOP GOSUB statement .

If a STOP
place and
place .

OFF statement has been executed, no trapping takes
the event is not remembered even i f it does take

If a STOP STOP statement has been executed, no trapping w il l
take place. But i f a Control- STOP is pressed, this i s remembe red,

91

MSX BASIC REFERENCE GUIDE

so an immediate trap w il l take place when STOP ON is executed.

ON SPRITE GOSUB <l ine numbe r >
Sets up a l ine number for BAS IC t o trap to when the sprites
coincide.

When the trap occurs an automatic SPRITE STOP is executed so
receive traps can never take pl ace. The RETURN from the trap
routine will automatically do a SPRITE ON unless an expl icit
SPRITE OFF has been performed inside the trap routine.

Event tr apping does not take place when BASIC is not executing
a program. When an error trap (r esulting f rom an ON ERROR
statement) takes place this automatically disables all trapping
(i ncluding ERROR, STRIG , STOP, SPRITE , INTERVAL and KEY) .

SPRITE ON/OFF/STOP
Activates/deactivates trapping of sprite in a BASIC program.

A SPRITE ON statement must be executed to activate trapping of
sprite. After SPRITE ON statement, if a l ine number i s
specified i n the ON SPRITE GOSUB statement then every time
BASIC starts a new statement it w ill check to see if the
sprites coincide. If so, it w il l perform a GOSUB to the l ine
number specif ied in the ON SPRITE GOSUB statement .

If a SPRITE OFF statement has been executed, no trapping takes
place and the event i s not remembered even i f it does take
place.

If a SPRITE STOP statement has been executed, no trapping will
take place. But if the sprites coincide, this i s remembered so
an immediate trap will take place when SPRITE ON is executed.

ON INTERVAL=<time interval > GOSUB < l ine number>
Sets up a l ine numbe r for BAS IC to trap to time interval .

Generates a timer interrupt every <time interval >/60 second.

When the trap occurs an automati c INTERVAL STOP i s executed so
receive traps can never take place. The RETURN from the trap
routine will automatically do a INTERVAL ON unless an expl icit
INTERVAL OFF has been pe rformed inside the trap routine.

Event trapping does not take place when BASIC i s not executing
a program. When an error trap (resulting from an ON ERROR
statement) takes place this automatically disables all traps
(including ERROR, STRIG, STOP, SPRITE, INTERVAL and KEY) .

INTERVAL ON/OFF/STOP
Activates/deactivates trapping of time intervals.

A INTERVAL ON statement must be executed to activate trapping
of time interval . After INTERVAL ON statement, if a l ine
number is specified in the ON INTERVAL GOSUB statement , then

92

MSX BASIC REFERENCE GUIDE

every time BASIC starts a new statement it w ill check the time
interval. If so, i t will perform a GOSUB to the l ine number
specified in the ON INTERVAL GOSUB statement.

If a INTERVAL OFF statement has been executed, no trapping
takes place and the event i s not r emembe red even if it does
take place.

If a INTERVAL STOP statement has been executed, no trapping
will take pl ace. But if the timer interrupt occurs, this i s
remembe red so an immediate trap will take place when INTERVAL
ON i s executed.

VPOKE <address of VRAM> ,<value to be wri tten>
Pokes a value to specified location of VRAM. <address of VRAM>
can be between 0 and 16383 . <val ue to be written> should be a
byte value.

BEEP
Generates a beep sound, as for the output of CHR$ (7) .

MOTOR [<ON I OFF> 1
Changes the status of cassette motor switch. When no argument
is given, fl ips the motor sw itch. Otherw ise, enabl es/disables
motor of cassette.

SOUND <register of PSG > , <value to be written>
Writes value directly to the < r egister of PSG > .

PLAY <string exp for voice l > l , <string exp for voice 2>
[, <string exp f or voice 3 > 1 1

Plays music according to the music macro language.

PLAY impl ements a concept similar to DRAW by embedding a "music
macro languagew into a character string. <string exp for voice
n> is a string expression consisting of single character music
commands . When a null string i s specified, the voice channel
remains silent. The single character commands in PLAY are:

A to G with optional t , + , or -

o n

N n

Plays the indicated note in the current octave.
A number sign < t > or plus sign {+) af terwards
indicates a sharp, a minus sign (-) indicates
a flat. The # , + , or is not allowed unless
it corresponds to a black key on a piano. For
exampl e, B# is an inval id note.

Octave. Sets the current octave for the
following notes. There are 8 octaves, numbered
1 to 8 . Each octave goes from C to B . Octave
4 i s the default octave.

Plays note n. n may
means rest. This is

93

range f rom 0 to 96 . n=O
an alternative way of

MSX BASIC REFERENCE GUIDE

selecting notes besides specifying the octav e (O
n) and the note name (A-G) • (The C of octave
4 is 36 .)

L n Sets the length of the following notes. The
actual note length is 1/n. n may range f r om
1 to 64. The following table may help explain
thi s :

Length Equivalent
Ll Whol e note
L2 Half note
L3 One of a triplet of three

half notes (1/ 3 of a 4 beat
measure)

L4 Quarter note
L5 One of a quintuplet (1/5

of a measure)
L6 One of a quarter note triplet

L64 Sixty- forth note

The 1 ength may a1 so
want to change the
For example, Al6 is
default is 4 .

follow the note when you
length only for the note.

equivalent to Ll6A. The

R n Pause <rest) . n may range f r om 1 to 64, and
f igures the length of the pause in the same
way as L (length) . The default is 4 .

T n

(Dot or pe r iod) After a note, causes the note
to be played as a dotted note. That is, its
l ength is multiplied by 3/2. More than one
dot may appear after the note, l/ (2An) is added
per one dot. For example, nA • • • n will pl ay
15/ 8 as long, etc. Dots may also appear after
the pause (P) to scale the pause length in the
same way .

Tempo. Sets the
a minute. n may
de£ aul t is 120 .

number of
range f rom

quarter notes in
3 2 to 2 5 5 . The

V n Volume. Sets the volume of output. n may range
f r om 0 to 1 5 . The default is 8 .

M n Modulation. Sets period of envelope. n may
range from 1 to 6553 5. The default i s 255 .

S n Shape. Sets shape of envelope. n may range
f r om 1 to 1 5 . The default is 1. The pattern
set by this command are as follows:

94

KSX BASIC REFERENCE GUIDE

0 , 1 , 2 , 3 ,9
\ ____ _

4 , 5 ,6 ,7 , 1 5 ;1_- --
8

10

1 1

1 2

13
I

1 4

X<variabl e>;
; E xecutes specified string.

In all of these commands , the n argument can be a constant l ik e
1 2 o r it can be n =<variabl e> 1 • where variable is the name of
a variable. The semicolon (;) is required when you use a
variable in this way , and when you use the X command.
Otherwise , a semicolon i s optional between commands. Note that
the values specified in the above commands will be reset to the
system default when a beep sound is generated.

MAXFILES=<expression>
Specifies the maximum number of files opened at a time.

95

MSX BASI C REFERENCE GUIDE

<expression> can be in the range of 0 to 1.5 . When ' MAXFILES=O •
is executed, only SAVE and LOAD can be performed. The default
value assigned is 1 .

OPEN " <device_descriptor > f < f il e name>] " [FOR <mode>]
AS [#] <f il e number>

Allocates a buffer for I/0 and set the mode that will be used
with the buffer .

Th i s statement opens a device for further processing.
Currently, the following devices are supported.

CAS : Cassette
CRT: CRT screen
GRP: G raphic scr een
L PT : Line printer

Device descriptors can be added using the ROM cartridge. See
section 2 . 2 . 3 for further details.

<mode> i s one of the following:

OUTPUT
INPUT
APPEND

Seq uential output mode
: Sequential input mode

Sequential append mode

<file number> i s an integer expr ession whose value is between
one and the maximum number of files specified in a MAXFILES=
statement .

< f i l e number> i s the number that is associated with the f il e
f o r a s long as it is OPEN and i s used by other I/O statements
to refer to the file.

An OPEN must be executed before any I/O may be done to the file
using any of the following statements, or any statement or
function requiring a file numbe r :

PRINT t , PRINT # USING
INPUT t , LINE INPUT t
INPUT $, GET, PUT

PRINT l<file nurnber> ,< exp>
PRINT #<file number > , USING <str ing expr ession>; <list of expression>

Writes data to the specified channe l . Refer to the PRINT and
PRINT USING statements for detai l s .

INPUT t<fil e number > , <variable list>
Reads data items f rom the specified channel and assigns them to
program variables.

The type of data in the f i l e must match the type specified by
the <variable l ist > . Unl ike the INPUT statement, no question
mark is printed with INPUT# statement.

96

RSX BASIC REFERENCE GUIDE

The data items in the file should appear j ust as they would if
data were being typed in response to an INPUT statement. With
numeric values, the leading spaces, carriage returns, and l ine
feeds are ignored. The f i rst character encountered that is not
a space, car r iage return, or l ine feed is assumed to be start
of a number . The number terminates on a space, car riage
r eturn, line feed, or comma.

Also, if BASIC i s scanning the data for a string i tem, leading
spaces, car r i age returns, and l ine feeds are ignored. The f irst
character encountered that is not a space, carriage return, or
l ine feed i s assumed to be the start of a string item. If this
f i rst character is a double-quotation mark (") , the str ing item
will consist of all characters read between the first quotation
mark and . the second. Thus, a quoted str ing may not contain a
quotation mark as a cha racter.

If the f i rst character of the str ing is not a quotation mark,
the string i s an unquoted string, and will terminate on a
comma, car r iage return, line feed, or after 255 characters
have been read. If end of file is reached when a numer ic or
string i tem is being INPUT, the item is terminated.

LINE INPUT t<file numbe r > , <string variabl e>
Reads an entire line <up to 254 characters) , without delimiters,
f rom a sequential file to a string variable.

< f il e numbe r > is the number which the file was OPENed.

<str ing variable> is the name of a string variable to which the
l ine will be assigned.

LINE INPUTi r eads all characters in the sequential file up to
a carriage return. It then skips over the car r iage return/line
feed sequence, and the next LINE INPUTt reads all characters
up to the next carriage return. < I f a l ine feed/carriage return
sequence i s encountered, it is preserved. That is, the l ine
f eed/carriage return characters are returned as part of the
string .)

LINE INPUT# is especially useful if each l ine of a file has
been broken into fields, or if a BASIC program saved in ASCII
mode i s being read as data by another program.

INPUT$ (n, £ t l <f ile numbe r > >
Returns a str ing of n characters, read fr om the file. <file
numbe r > is the number which the file was OPENed.

CLOSE [[#] < file numbe r > [, < f il e number >]]
Closes the channel and rel eases the buffer associated w ith it.
If no <file numbe r > is specified, all open channels are closed.

SAVE R<device descriptor > [<f i l e name > l "
Saves a BASIC program file to the dev ice. Control-Z is treated
as end-of-file.

97

MSX BASIC REFERENCE GUIDE

LOAD " <dev ice_descr iptor > [<file name>] "
Loads a BASIC program file from the dev ice.

LOAD closes all open files and deletes the current program from
memory. However, with the "R" option, all data f iles remain
OPEN and execute the loaded program.

If the <file name> is omitted, the next program, which should
be an ASCII file, encountered on the tape is loaded. Control - Z
is treated a s end-of- file.

MERGE "<device descriptor > E<fil e name>l "
Merges the l ines from an ASCII program file into the program
currently in memory .

If any lines in the file being merged have the same line number
as lines in the program in memory , the lines f rom the file will
replace the corresponding l ines in memory.

After the MERGE command, the MERGEd program resides in memory ,
and BASIC returns to command level .

If <file name> i s omitted, the next program file, which should
be in ASCII format, encountered on cassette tape is MERG Ed. A
Control- Z is treated as end-of-file character.

BSAVE "<device descriptor > [<file name>l " , <top adrs> , <end adrs>
[, <execution adr s>l

Saves a memory image at the specified memory location to the
device. (Currently, only CAS : is supported.)

<top adr s > and <end adrs> are the top address and the end
address of the area to be saved.

If <execution adrs> i s om itted, <top adrs> i s regarded as
<execution adr s > .

Exampl e s :

BSAVE "CAS :TEST" , &HAO O O , &HAFFF
BSAVE "CAS :GAME " , &HEO O O , &HE0FF, &HE020

BLOAD " <dev ice_descr iptor > l< f il e name>J " [, Rl l , <offset>l
Loads a machine language program from the specified device.
< Curr ently only CAS : is supported.)

I f R option is specif ied, after the loading, program begins
execution automatically f rom the address which i s specified at
BSAVE.

The loaded machine language program will be stored at the
memory location which i s specified at BSAVE. If <offset> i s
specified, all addresses which are specified at BSAVE are
offset by that value.

98

MSX BASIC REFERENCE GUIDE

If the <file name> is omitted, the next machine l anguage
program file encountered i s loaded.

CSAVE " < f il e name>" l , <baud rate >]
Saves a BAS I C program in binary format on cassette tape.

BASI C saves the file in a compr essed binary (tokenized) format.
ASCII files take up more space , but some types of access
require that f iles be in ASCII format. For exampl e, a file
to be later MERG Ed must be saved in ASCII format. Programs
saved in ASCII may be read as BASIC data f iles and text files.
Use the SAVE command instead for ASCII format.

<baud rate> is a parameter f rom 1 to 2 , which determines the
default baud rate for every cassette write operations. 1 for
1200 baud, 2 for 2 40 0 baud. The default baud rate can also be
set with SCREEN statement.

CLOAD l " <f il e name>"]
Loads a BAS IC program file f rom the cassette tape .

CLOAD closes all open f iles and deletes the current program
f rom memory. If the <file name> i s omitted, the next program
f i l e encountered on the tape is loaded. For all cassette read
operations, the baud rate i s determined automatically.

CLOAD? [" <f il e name> "]
Checks i f the program on cassette matches the one in memory .

CALL <name
Invokes
section
I CALL' ,

of expanded statement> l < <a rgument list>)]
an expanded statement suppl ied by ROM cartridge.

2 .2 . 3 for f ur ther details. ' - ' is an abbreviation
so the next 2 statements have the same meaning.

CALL TALK (" Yamashi ta", "Hayash i " , "Suzuki GSX40 0FW ")
_TALK (" Yamashita " , "Hayash i " , "Suzuki GSX400FW ")

99

See
for

MSX BAS I C REFERENCE GUIDE

2 . 1 . 1 4 I/O Functions

POINT C<X coordinate > , <Y coordinate>>
Returns the color of a specified pixel.

VPEEK (<address of VRAM>)
Returns a value of VRAM specified.
in the range of 0 to 1 6 3 83 .

STICK C<n»

<address of VRAM> can be

Returns the direction of a joystick. <n> can be in the range
of 0 to 2 . If <n>=O , the cursor key is used as a j oystick. If
<n> i s either 1 or 2 , the j oystick connected to proper po r t
i s used. When neutral, 0 is returned. Otherw ise , the value
corresponding to direction is returned.

1
B

\
l

/
2

7 -0 -3

6
/

l
\

4
5

STRIG (< n >)
Returns the status of a trigger button o f a j oystick . <n> can
be in the range of 0 - 4 . If <n>=O , the space bar i s used for
a trigger button. If <n> is ei ther 1 or 3 , the trigger of a
j oystick 1 i s used. When <n> is either 2 or 4 , joystick 2 .
0 i s returned if the trigger i s not being pressed, -1 is
returned otherwise.

PDL C < n >)
Returns the value
1 to 1 2 . If <n> i s
connected t o po r t 1
the paddl e connected

PAD C < n >)

of a paddle. <n> can be in the range of
either 1 , 3 , 5 , 7 , 9 or 1 1 , the paddle
is used. When 2 , 4 , 6 , 8 , 1 0 or 1 2 ,
to port 2 is used.

Returns various status of touch pad.
of 0 to 7 .

< n > can be in the range

When 0 to 3 is specified, the touch pad connected to j oystick
port 1 is selected, if between 4 to 7 , po r t 2 is selected.

When <n>=O or 4 , the status of touch pad is returned, -1 when
touched, 0 when released.

When <n>=l or 5 , the X-coordinate i s returned, when <n>=2 or
6 , Y-coordinate i s returned.

When <n>=3 or 7 , the status of switch on the pad i s returned,

100

MSX BASIC REFERENCE GUIDE

-1 when being pushed, 0 otherwise.

Note that coordinates are valid only when PAD (O) <or PAD (4))
is evaluated. When PAD (O) is evaluated, PAD (S) and PAD (6) are
both affected, and when PAD (4) , PAD (l) and PAD (2) .

PLAY (<play channel >)
Returns the status of a music queue. < n > can be in the range
of 0-3 . If <n>=O, all 3 status a r e ORed and returned. If <n>
i s either 1 , 2 or 3 , -1 is returned if the queue i s still in
operation, i. e. , still playing. 0 is returned otherwise . Note
that immediately after the PLAY statement i s issued, the PLAY
function returns -1 regardless of the actual status o f the
music queue.

EOF { < f il e number >)
Returns - 1 < t r ue > if the end o f a sequential file has been
reached. Otherw i s e , returns 0 . Use EOF to test for end-of-file
while INPUTing, to avoid ' Input past end' errors.

MSX BASIC REFERENCE GUIDE

2 . 1 . 1 5 Special Variables

The following a r e special variables for MSX. When assigned, the
content i s changed, when evaluated, the current value is returned.

TIME (type : unsigned intege r)
The system internal timer. TIME is automatically incr emented
by 1 everytime VDP generates interrupt (6 0 times per second) ,
thus, when an interrupt i s disabled (for exampl e, when
manipulating cassette) , it retains the old value.

SPRITE $ C <pattern numbe r > >
The sprite pattern.

(type : string)

<pattern numbe r > must be less than 256 when siz e of sprites is
0 or 1 , less than 64 when size of sprites is 2 or 3 .

The length of this variable i s f ixed to 3 2 (bytes) . So, if
a string that is shorter than 3 2 character is assigned, the
CHR$ (0) s a r e added.

Exampl e :
l ist
1 0 0 SCREEN 3 , 3
1 1 0 A$�CHR$ (1) +CHR$ (3) +CHR$ (7) +CHR$ (&HF) +CHR$ (&BlF)
+CHR$ (&H 3 F) +CHR$ (&H7F) +CHR$ (&HFF)
120 SPRITE $ (1) =A$
1 3 0 SPRITE $ (2) =A$+A$
140 SPRITE $ (3) =A$+A$+A$
1 5 0 SPRITE $ (4) =A$+A$+A$+A$
1 6 0 PUT SPRITE 1 , (20 , 2 0) , 1 5
1 7 0 PUT SPRITE 2 , (60 , 2 0) , 1 5
1 80 PUT SPRITE 3 , (1 0 0 , 2 0) , 1 5
1 90 PUT SPRITE 4 , (140 , 2 0) , 1 5
2 0 0 GOTO 2 0 0
Ok
run

**
* NOTE *
* The following two are system variables which can be eval uated *
* or assigned l ike other ordinary variabl es. Prepared for *
* advanced programmers only. If you do not understand their *
* usage fully , please do not use them. *
* *
**

VDP (< n > > (ty pe : unsigned b¥te)
If <n> is between 0 to 7 , VDP (n) specifies the current value of
the VDP write-only register. If <n> i s a , it specifies the
status register of the VDP. VDP (8) is read only.

BAS E (<n >) (type : integer)
Curr ent base address for each table.
foll ows next.

102

The description of <n>

MSX BASIC REFERENCE GUIDE

0 - Base of name table for text mode .

J 1 - Undefined
2 - Base of pattern generator table for text mode . 40 * 24
3 - Undefineo
4 - Undef ined

5 - Base
6 - Base
7 - Base
8 - Base
9 - Base

10 - Base
11 - Base
1 2 - Base
13 - Base
1 4 - Base

of
of
of
of
of

of
of
of
of
of

name table for text mode .

J color table for text mooe .
pattern generator table for text mode. 32 * 24
sprite attribute table for text mode.
sprite pattern table for text mode.

name table for high-resolution mode .
color table for high-resolution mode.
pattern generator table for high-resolution mode.
sprite attribute table for high-resolution mode.
sprite pattern table for high-resol ution mode.

15 - Base of name table for multi-color mode .
16 - Undef ined
17 - Base of pattern generator table for multi-color mode .
1 8 - Base of sprite attr ibute table for multi-color mode .
1 9 - Base of spr ite pattern table for multi-color mode .

103

MSX BASIC REFERENCE GUIDE

2 . 1 . 1 6 Machine Dependent Statements and Functions

**
* NOTE *
* The following statements and functions access the system ' s *
* I/0 port directly. Programs that use those statements and *
* functions will thus not be compatible with MSX systems *
* released in the f uture. Programs distributed to the publ ic *
* should not use those statements and functions. *
* *
** *************** ***

OUT <port numbe r > , < integer expr ession>
Sends a by te to a machine output port.

<port numbe r > and <integer expression> are in the range 0 to
2 5 5 . <integer expression> i s the data byte to be transmitted.

WAIT <port number> , I (, Jl
suspends program execution while monitoring the status of a
machine input port.

The WAIT statement causes execution to be suspended until a
specified machine input port develops a specified bit pattern.
The data read at the port is exclusive OR' ed with the integer
expression J, and then is AND• ed with integer expr ession I. If
the result is z ero, BAS IC loops back and reads the data at the
port again. If the result is non- zero, execution continues with
the next statement. If J is omitted, it is assumed as z ero.

INP(<port numbe r >!)
Returns the byte read from the port I. I must be in the range
0 to 2 5 5 . INP is the complementary function to the OUT
statement.

NOTE
In the above statements and functions, <port number> is handled

with a 16-bit number to support the Z-80 capability to access
I/0 ports with the [BCl register pair, however, standard MSX
systems do not suppor t these extended I/0 address spaces , and
port numbers larger than 2 5 5 are undefined.

104

MSX BASIC REFERENCE GUIDE

2 . 1 . 17 Summary of Error Codes and Er ror Messages

Code

1

Message

NEXT without FOR
A variable
cor r espond to
FOR statement

in a NEXT statement does not
any previously executed, unmatched
variable.

2 Syntax error
A l ine is encountered that contains some
incorrect seq uence of characters (such as
unmatched parenthesis, misspelled command or
statement, incorrect punctuation, etc.)

3 RETURN without GOSUB

4

5

Out

A RETURN statement is encountered for which
there is no prev ious, unmatched GOSUB statement .

of DATA
A READ statement
no DATA statement
in the program.

i s executed when there are
with unread data remaining

Illegal function call
A parameter that i s
t o a math or string
may al so occur due to

out of the range is passed
f unction. An FC error

the follow ing causes:

1 . A negative or unreasonably large subscript.
2 . A negative or z er o ar gument with LOG.
3 . A negative argument to SQR.
4 . An improper argument to MI D $, LEFT $, RIGHT $,

INP, OUT, PEEK, POKE, TAB , SPC, STRING $,
SPACE $, INSTR$ o r ON . • • GOTO.

6 OVerflow

7

8

Out

The result of a calculation is too large to
be represented in BASIC' s number format.

of memory
A program is
has too many
variables,
compl icated.

too large, has too many files,
FOR loops or GOSUBs, too many

or expressions that are too

Undefined l ine number
A l ine reference
IF • • • THEN • . • ELSE is to

105

in a GOTO,
a nonexistent

GOSUB ,
1 ine .

MSX BASIC REFERENCE GUIDE

9 Subscript out of range
An array element i s refer enced either with

dimensions
number of

a subscript that is outside the
of the array , or with the wrong
subscr ipt s.

10 Redimensioned array
Two DIM statements are given for the same array �
or DIM statement i s given for an array after
the default dimension of 1 0 has been established
for that array .

11 Division by zero
A division by zero is encountered in an
expression, or the operation of invol ution
results in z er o being raised to a negative
power.

1 2 I l l egal direct

13

1 4

A statement that i s illegal in direct mode
i s entered as a direct mode command.

Type mismatch

Out

A string variable name
value or vice versa ; a
a numeric ar gument i s
or vice versa.

of string space

is assigned a numeric
function that expects
given a string argument

String variables have caused BAS IC to exceed
the amount of free memory rerna1n1ng. BAS IC
w ill allocate string space dynamically, until
it runs out of memory.

1 5 String too long
An attempt is made to create a string more
than 255 character long.

16 String formula too compl ex
A string expression is too long or too compl ex.
The expression should be broken into smal l er
expressions.

17 Can• t continue
An attempt is made to continue a program that :

1 . has halted due to an error,
2 . has been modified during

execution, or
3 . does not exist.

1 8 Undefined user function

a break in

FN function is called before defining i t with
the DEF FN statement.

106

MSX BASIC REFERENCE GUIDE

1 9 Device I/0 error

20

21

An I/O error occurred on a cassette, pr inter,
o r CRT operation. It i s a fatal error ; i . e . ,
BASIC cannot recover f rom the er ror.

Verify error
The curr ent program is differ ent from
program saved on the cassette.

No RESUME
An er ror trapping routine is
contains no RESUME statement.

entered

the

but

2 2 RESUME without error

2 3

A RESUME statement i s encountered before an
er ror tr apping routine is entered.

Unprintable error
An error message
condition which
by an ERROR with

is not avail abl e for the error
exi st s . This is usually caused
an undefined error code.

2 4 Missing operand
An expr ession contained an operator with no
operand following it.

2 5 Line buffer overfl ow
An entered l ine bas too many characters.

26 Unprintable er rors
These codes have no definitions. These are

4 9 reserved for future expansion of BAS IC.

50 FIELD overflow
A FIELD statement is attempting allocate more
bytes than were specified for the record length
of a random file in the OPEN statement. Or,
the end of the FIELD buffer is encountered
while doing sequential I/O (PRINTt, INPUTi) to
a random file.

51 Internal error

52 Bad

An internal mal function has occurred. Report
to Microsoft the conditions under which the
message appeared.

file number
A statement or command references
a file number that is not OPEN
the range of file numbers specified
statement.

a file with
or is out of

by MAXF ILE

53 File not found
A LOAD, KILL, or OPEN statement references
a file that does not exist in the memory .

107

MSX BASIC REFERENCE GUIDE

54 File al ready open
A sequential output mode OPEN i s issued for
a file that 1s al ready open� or a KILL is given
for a file that is open.

55 Input past end
An INPUT statement is executed after all the
data in the f il e has been INPUT, or for null
(empty) file. To avoid this error, use the
EOF function to detect the end of file.

5 6 Bad file name
An illegal form is used for the file name with
LOAD, SAVE, KILL, NAME , etc.

5 7 Direct statement in file
A direct statement is encountered while LOADing
an ASCII format file. The LOAD i s terminated.

5 8 Sequential I/0 only
A statement to random access i s issued for
a sequential file.

5 9 File not OPEN
The fil e specified in a PRINT#, INPUT#, etc.
hasn • t been OPENed.

6 0 Unprintabl e error
These codes have no definitions. Users may
place their own error code definitions at the

2 55 high end of this range.

108

MSX BAS IC REFERENCE GUIDE

2 . 1 . 1 8 MSX BASIC Reserved Words

The following is a l ist of reserved words used in MSX BASIC. !iote
that the words w ith asterisk (*) are reserved for future expa�sion
only and not explained anywhere in this book.

AB S DEFSTR KEY PAINT STRING S
AND DELETE KILL PDL SWAP
ASC DIM LEFT$ PEEK TAB (

*ATTR$ DRAW LEN PLAY TAN
ATN DSKF LET POINT THEN
AUTO DSKI $ LFILES POKE TIME
BASE DSKO LINE POS TO
BEEP ELSE LIST PRESET TROFF
B IN$ END LLIST PRINT TRON
BLOAD EOF LOAD PSET U SING
BSAV E EQV LOC PUT USR
CALL ERASE LOCATE READ VAL
CDBL ERL LOF REM VARPTR
CHR$ ERR LOG RENUM VDP
CINT ERROR LPOS RESTORE VPEEK
CIRCLE EXP LPRINT RESUME VPOKE
CLEAR FIELD LSET RETURN WAIT
CLOAD FILES MAX RIGHT$ WIDTH
CLOSE FIX MERGE RND XOR
CL S FN MID$ RSET

*CMD FOR MKD$ RUN
COLOR FPOS MKI $ SAVE
CONT FRE MKS $ SCREEN
COPY GET MOD *SET
cos GO '1'0 MOTOR SGN
CSAVE GOSUB NAME SIN
CSNG GOTO NEW SOUND
CSRLIN HEX$ NEXT SPACE $
CVD IF NOT SPC (
CV I IMP OCT$ SPRITE
cvs INKEY$ OFF SQR
DATA INP ON STEP
DEF INPUT OPEN STICK
DEFDBL INSTR OR STOP
DEFINT INT OUT STR$
DEFSNG *IPL PAD STRIG

109

ADVANCED PROGRAMMING GUIDE

2 . 2 Advanced Programming Guide

2 . 2 . 1 BIOS Entry List

COMMENT %

The following Restarts (RSTs 0 through RST 5) are reserved for
the BAS IC interpreter, RST 6 for inter-slot calls, RST 7 for
hardware interrupt.

The following notation is used in the descr iptions.

Name
Function
Entry
Returns
Modifies
Notes

%
.
,
. Name: I

1 Function :
1 Entry :
� Returns:
•
I Modifies:
.
I

.
I

Note:

0000 DI
ENTR
1M
DB
DB

; Name:

CHKRAM
CGTABL
VDP . DR
VDP. IM

; Function:
•
I

;
; Entry :

Returns :

; Modifies:
.
I

0 0 0 8 ENTR
HOLE

.
I

; Name:

SYNCHR
1

Name of function
Function to be pe rformed
Entry parameters
Returned pa rameters
Registers to be modified
(optional>

CHKRAM
Checks RAM and sets slot for command area.
None
None
All
When done, a j ump to !NIT must be made for
further initialization •

SYNCHR

;For fail safe

;Address of cha racter generator table
;Address of VDP data register (r ead)
; Address of VDP data register (write>

Checks if the curr ent character pointed by
HL is the one desired. If not, generates
' Syntax error • , otherwise falls into CHRGTR.
HL, character to be checked be placed at the
next location to this RST.
HL points to next character, A has the
character .
Carry flag set i f numbe r , z flag set if end
of statement.
AF, HL

RDSLT

110

ADVANCED PROGRAMMING GUIDE

Function:

• ,
. , E ntry :
. ,
;
;
;

; Returns:
; Modifies:
. , Note:
;
;

oooc ENT RDSLT
BOLE 1

;
Name:
Function:

. , Entry :
Returns:

• ,
• ,
. , Modif ies :
;

0010 ENTR CHRGTR
HOLE 1

• , Name:
; Function:
;
;
. Entry : ,

;
;
. ,
• , . , . , Returns:

Modif ies:
; Note:
.
I
. ,

oooc ENT WRSLT
HOLE 1

. ,
; Name:
. , Function:

Entry :
; Returns:
. Modif ies: I
. ,

Selects the appropriate slot according to
value given through registers, and reads
contents of memory fr om the slot •

A : FxxxSSPP
I I I l l
I l I L.&.__
I L"'"----

Primary slot t (0-3)
Secondary slot I (0-3)

tbe
the

L--------- 1 if secondary slot I specified

HL : Address of target memory
A : Contents of memory
AF, BC, DE
Interrupts are disabled automatically but
are never enabled by this routine.

CH�TR
Gets next
HL

character (or token> from BASIC text

HL points
character.
set if end
AF, HL

to next character, A has the
Carry flag set if number, z flag

of statement encountered •

WRSLT
Selects the appropriate slot according to the
value given through registers, and writes to
memory .
A : FxxxSSPP

I I I I I
I l l ... •--
1 L-L----

... ________ _

Primary slot t (0-3)
Secondary slot I (0-3)
1 if secondary slot t specified

HL: Address of target memory
E : Data to be written
None
AF, BC, D
Interrupts are disabled automatically but
are never enabled by this routine •

OUTDO
Outputs t o the current device •

A, PTRFIL, PRTFLG
None
None

111

ADV'ANCED PROGRAMMING GUIDE

001 8 ENT
HOLE

;
.
I Nam e :

OUTDO
1

; Function:
; Entry :

CAL SLT
Performs inter-slot call to specified address.
IY -FxxxSSPP

; (BIG B) I I I I l
;
; .
I

Returns :
Modif i e s :

.
,

Note :

OOlC ENT
HOLE

•
I

; Nam e :

CALSLT
1

; Function :
; Entry :
; Returns :
; Modif ies :
;

0020 ENTR
HOLE

DCOMPR
1

.
I Nam e :

Function:

Entry :

;
7
1
; .
I

Returns:
Modif i e s :
Note :

.
I
.
I

0024 ENT ENASLT
HOLE 1

Nam e :
Function:

; Entry :
; Returns:
; Modif i e s :

I I I �._- Primary slot t (0-3 >
I L..._ ____ Secondary slot I (0-3)
�-------- 1 if secondary slot # specified

IX Address to call
None
None
Inter rupts are disabled automatically but
never enabled by this routine. Arguments can
never be passed via the alternate registers of
the Z-80 or I X and IY •

DCOMPR
Compares HL with DE.
BL, DE
Flags
AF

ENASLT
Selects the appropriate slot according to the
value given through registers, and permanently
enables the slot.
A : FxxxSSPP

I 1 1 1 1
I I I ._..._ __ Primary slot i (0-3)
I �..._ ____ Secondary slot t (0-3)
�-------- 1 if secondary slot t specified

HL: Address of target memory
None
All
Interrupts are disabled automatically but
a r e never enabled by th is routine •

GETYPR
Returns the type of FAC.
FAC
Flags
AF

112

ADVANCED PROGRAMMING GUIDE

;
0028 ENTR G ETYPR

; The following 5 bytes arc reserved to store the MSX version
; numbe r . The fi rst versions hold 5 zeros •

.
I

i
;
;

. ,
;
;

;
;
. ,
• ,

HOLE 5

Name:
Function:
Entry :
Returns :
Modifies:
Note:

0030 ENTR
HOLE

CALLF
5

;
; Name:
; Function:
; Entry :
; Returns :
; Modifies:
. ,

003 8 ENTR KEYINT

CALLF
Performs far_call (i . e. , inter-slot cal l)
None
Flags
AF
The calling sequence i s as follows.

RST 6
DB Destination slot
DW Destination address

Fo� a precise description of the parameters,
see CALSLT •

KEY INT
Performs hardware inter rupt procedur es.
None
None
None

113

ADVANCED PROGRAMMING GUIDE

WMMENT %

The f ollowing routines are used for I/O initialization.

%
;
.
' Nam e :
.
, Function:
; Entry :
; Return s :
; Modif ies:
1

003B ENT
.
,

; Name:

INITIO

; Function:
; Entry :
; Returns:
; Modifies:
;

003E ENT INIFNK

INITIO

Performs device initialization.
None
None
All

INIFNK

Initializ es function key strings.
None
None
All

114

ADVANCED PROGRAMMING GUIDE

COMMENT %

The following routines are used to access the VDP (TI9918l •

.
,
; Name:
1 Function:
; Entry :
; Returns:
; Modifies:
.
,

0041 ENT
;
; Name:

DISSCR

; Function:
; Entry :
; Returns:
; Modif ies:
. ,

0044 ENT
;
; Name:

ENASCR

; Function:
; Entry :
; Returns :
; Modif ies:
. ,

0047 ENT
;
; Name :

WR'.LVDP

; Function:
; Entry :
; Returns :
; Modi£ ies.:
;

0 0 4A ENT

Name :

RDVRM

; Function:
•
, Entry :
. Returns : I
. Modifies: I

;
0040 ENT WR'.LVRM

. ,

.
I Name:
. Function: ,
. Entry : ,
; Returns:

Modifies:
;

0050 ENT SETRD
;
; Name :

DISSCR
Disables screen display.
None
None
AF, BC

ENASCR
Enables screen display .
None
None
AF, BC

WR'.LVDP
Writes to the VDP register.
Register t i n [CJ , data in [B)
None
AF, BC

RDVRM
Reads the VRAM addressed by [HLJ .
HL
A
AF

WR'.LVRM
Writes to the VRAM addressed by [HL] •
HL, A
None
AF

SETRD
Sets up the VDP for read.
HL
None
AF

SE'IWRT

115

ADVANCED PROGRAMMING GUIDE

; Function:
1 Entry :

Returns:
; Modif ies:
1

0053 ENT

; Name:

SE'lWRT

; Function:
Entry :

; Returns:
Modif ies:

;
0056 ENT

Name :

FILVRM

; Function:
; Entry :

; Returns :
; Modifies :
.
I

0059 ENT
.
I

; Name:

LDIRMV

; Function:
Entry :

;
; Returns:
; Modifies:
•
I

OOSC ENT
;
; Name:

LDIRVM

; Function:
; Entry :
; Returns:
; Modifies:
.
I

OOSF ENT
;
; Name:

CHGMOD

; Function:
1 Entry :
;
.
I

; Returns:
; Modif ies :
;

0062 ENT
HOLE

;
Name:

CHGCLR
1

; Function:
; Entry :

Sets up the VDP for write.
HL
None
AF

FILVRM
Fills the VRAM with the specified data.
Address in [HL) , length i n [BCl , data in [Ace]
None
AF, BC

LDIRMV
Moves a VRAM memory block to memory .
Address of source in lHLl , destination in [DE l ,
length in [BC] .
None
All

LDIRVM
Moves block of memory from memory to the VRAM.
Address of source in [HLJ , destination in [DE l ,
length in [BCJ .
None
All

CHGMOD
Sets the VDP mode according to SCRMOD.
SCRMOD C O • • 3)
None
All

CHGCLR
Changes the color of the screen.
Foreground color in FORCLR
Background color in BAKCLR
Border color in BDRCLR
None
All

NMI
Performs non-�askabl e interrupt procedures.
None

116

ADVANCED PROGRAMMING GUIDE

; Returns:
.
I Modifies :
.
I

0066 ENT NMI
•
I

Name:
Function:

;
;
.
I

;
Entry :

; Returns:
. Modif ies: I
.
I

0069 ENT CLRSPR

Name:
Function:

; Entry :
; Returns:
.
I Modifies:

006C ENT INITXT

Name:
; Function :
;

Entry :
Returns:
Modifies:

;
006F ENT

.
I

; Name:

INIT32

Function:

Entry :
; Returns:
; Modif ies:
.
I

0072 ENT
. ,
; Name:

INIGRP

Function:

; Entry :
; Returns:
; Modifies:
;

007 5 ENT
. ,

Name:

INIMLT

Function:

None
None

CLRSPR
Initializes all sprites.
Patterns are set to nulls,
set to sprite plane number ,
set to foreground color ,
are set to 2 0 9 .
SCRMOD
None
All

INITXT

sprite names a r e
sprite colors are

vertical positions

Initializes screen for text mode (40*24) and
sets the VDP.
TXTNAM, TXTCG P
None
All

INIT32
Initializes screen for text mode (32*24) and
sets the VDP.
T3 2NAM, T32CGP, T32COL, T32ATR, T32PAT
None
All

INIGRP
Initializes screen for high- resolution mode
and sets the VDP.
GRPNAM, GRPCGP, GRPCOL , GRPATR, GRPPAT
None
All

INIMLT
Initializes screen for multicolor mode and
sets the VDP.
MLTNAM, MLTCGP, MLTCOL, MLTATR, MLTPAT
None
All

SETTXT
Sets the VDP for text (40 * 24) mode.

117

ADVANCED PROGRAMMING GUIDE

. , Entry :
; Returns:
; Modifies:
;

0078 ENT S ETTXT
. ,
; Name:

Function:
. , Entry :
. , Returns:
; Modifies:
;

007B ENT SETT32

. , Name:
; Function:
; Entry :
; Returns:
; Modif ies:
;

007E ENT SETGRP
i
.
I Nam e :
; Function:
; Entry :
. Returns : I

; Modifies:
;

0 0 81 ENT SETMLT
;
; Name:
•
I Function:
•
I Entry :
.
I Returns:
. I Modifies:
.
I

0 0 84 ENT CAL PAT

Name:
Function:
Entry :

; Returns:
; Modifies :
;

0 0 87 ENT
. ,
; Name :

CALATR

; Function:
; Entry :
; Returns:

.
I

Modifies:
.
I

0 0 8A ENT GSPSIZ

TXTNAM, TXTCG P
None
All

SETT3 2
Sets the VDP for text (3 2*24) mode .
T3 2 NAM, T32CGP, T32COL, T32ATR1 T32PAT
None
All

SETGRP
Sets the VDP for high-resolution mode .
GRPNAM, GRPOGP, GRPCOL, GRPATR, GRPPAT
None
All

SETMLT
Sets the VDP for multicolor mode .
MLTNAM, MLTCGP, MLTCOL, MLTATR, MLTPAT
None
All

CAL PAT
Returns address of sprite pa ttern table •

Sprite ID in [Ace]
Address in [HLJ
AF, DE, HL

CALATR
Returns address of sprite attribute table.
Sprite ID in [Ace]
Address in [HL1
AF, DE, HL

GSPSIZ
Returns the current sprite size.
None
Sprite size (I of by tes) in [Ace]
Carry set if 16*16 sprite in use , otherwise
reset the otherwise •

AF

118

ADVANCED PROGRAMMING GUIDE

;
; Name:

Function:
Entry :
Returns:

; Modifies:
;

0080 ENT GRPPRT

GRPPRT
Prints a character on the graphic screen.
Code to output in [Ace]
None
None

119

ADVANCED PROGRAMMING GUIDE

COMMENT %

The follow ing routines are used to access the PSG .

%
;
; Name:
.
I Function:
•

I
.
I Entry :
i Returns:

Modifies:
;

0090 ENT GICINI
i
; Name:
; Function :
; Entry :
; Returns:
; Modifies:
;

0 0 93 ENT WRTPSG

; Name:
Function:
Entry :

; Returns :
; Modifies:
.
I

0096 ENT
.
I

; Name:

RDPSG

; Function:
Entry :

; Returns:
; Modifies:
.
,

0099 ENT STRTMS

GICINI
Initializes PSG , and static data for PLAY
statement •

None
None
All

WRTPSG
Writes data to the PSG register.
Register number in lAce] , data in [E)
None
None

RDPSG
Reads data f rom the PSG register.
Register number in [Ace]
Data in [Accl
None

STRTMS
Checks/starts background tasks for PLAY.
None
None
All

120

ADVANCED PROGRAMMING GUIDE

COMMENT %

The following routines are used to access the consol e , i. e. , the
keyboard and the CRT.

%

Name:
Function:
Entr y :
Returns:
Modifies:

;
009C ENT

Name :

CHSNS

Function:

Entry :
Returns:
Modifies :

;
0 0 9F ENT

Name:

CHGET

Function:
Entry :
Returns:
Modifies:

. ,
OOA2 ENT

Name :

CHPUT

; Function:
Entry :
Returns:

1 Modifies :
. ,

OOAS ENT
;
; Nam e :

LPTOUT

; Function:
; Entry :
; Returns:
;
; Modifies:
;

00A8 ENT LPTSTT

; Name:
; Function:
; Entry :
; Returns:
;
;

CHSNS
Checks the status of keyboard buffer.
None
z flag reset if any character in buffer.
AF

CHGET
Waits for characters being input and returns
the character codes.
None
Character code in [Ace]
AF

CHPUT
Outputs a character to the consol e.
Character code to be output in [Ace]
None
None

LP!'OUT
Outputs a character to the line printer.
Character code to be output in [Ace]
Carry flag set if aborted.
F

LPTSTT
Checks the l ine printer status.
None
255 in [Ace] and z flag reset if printer ready,
0 and Z flag set if not.
AF

CNVOIR
Checks graphic
Character code
Cy flag reset:
Cy and Z flags
Cy flag set, z

121

header byte and converts codes.
in [Ace]

graphi c header byte
set, converted graphic code
flag reset, non-converted code

ADVANCED PROGRAMMING GUIDE

; Modif ies : AF
;

OOAB ENT
. ,
; Name:

CNVCHR

; Function:
0 ,
; Entry :
; Returns :
;
; Modifies:
;

OOAE ENT PINLIN

; Name:
; Function:
; Entry :
; Returns :
;
; Modif ies:
;

OOBl ENT INLIN
;
; Name :
; Function:
. ,

Entry :
; Returns :
. ,
; Modif ies:
• ,

0084 ENT
. ,
; Name:

QINLIN

; Function:
Entry :

; Returns:
Modifies:

; Note :
.
I

;
0 087 ENT

; Name:

BREAKX

Function:
; Entry :
; Returns:

Modifies:
. ,

OOBA ENT ISCNTC
;

Name:
Function:
Entry :
Returns:

PINLIN
Accepts a line from consol e until a CR or STOP
is typed, and stores the l ine in a buff er.
None
Address of buffer top-1 in [HLl , carry flag
set if STOP is input.
All

INLIN
Same as PINLIN, except if AUTFLG is set.
None
Address of buffer top-1 in [HLJ 1 carry flag
set if STOP is input .
All

QINLIN
Outputs a ' ? ' mark and a space then falls into
the INLIN routine •

None
Address of buffer top-1 in [HLl 1 carry flag
set if STOP is input •

All

BREAK X
Checks the status of the Control- STOP key.
None
Carry flag set if being pressed.
AF
Th is routine i s used to check Control-STOP
when interrupts are disabled •

ISCNTC
Checks the status of the SHIFT-STOP key.
None
None
None

CKCNTC
Same as ISCNTC, used by BASIC.
None
None

122

ADVANCED PROGRAMMING GUIDE

; Modifies:
.
I

OOBD ENT CKCNTC

;

;
ooco

.
I
.
I
. I

;
OOC3

.
I

OOC6

.
I

Name:
Function:
Entry :
Returns:
Modifies:

ENT BEEP

Name :
Function:
Entry :
Returns :
Modifies:

ENT CLS

Name:
Function:
Entry :
Returns:
Modifies:

ENT POSIT

Name :
Function:

; Entry :
Returns:

; Modifies:
;

OOC9 ENT

Name:

FNKSB

Function:
Entry :
Returns:
Modifies:

;
OOCC ENT

; Name:

ERAFNK

Function:
; Entry :
; Returns :
; Modifies:
.
,

OOCF ENT

Name:

DSPFNK

; Function:

None

BEEP
Sounds the buz zer.
None
None
All

CLS
Clears the screen.
None
None
AF, BC, DE

POSIT
Locates the cursor at the specified position.
Column in [Hl , row in [LJ
None
AF

FNKSB
Checks if function key displ ay i s active. If
it is, it displays it, otherwise does nothing •

FNKFLG
None
All

ERAFNK
Erases the function key displ ay .
None
None
All

DSPFNK
Displays the function key display.
None
None
All

TO TEXT
For cibly places the screen in text mode .

123

ADVANCED PROGRAMMING GUIDE

; Entry : None

i

Returns: None
Modif ies: All

00D2 ENT TOTEXT

124

ADVANCED PROGRAMMING GUIDE

COMMENT %

The following routines are used for game I/O access.

Name:
; Function:
; Entry :
; Returns:
; Modif ies:
;

OODS ENT

Name:

GTSTCK

; Function:
; Entry :
; Returns:

1 Modifies:
;

0008 ENT

; Name:

GTTRIG

; Function:
; Entry :
1 Returns :
1 Modi f ies:
;

O ODB ENT
;
; Name:

GTPAD

; Function:
; Entry :

Returns:
Modifies:

;
OODE ENT GTPDL

GTSTCK
Returns the current j oystick status.
Joystick ID in [Ace)
Direction in [Ace]
All

GTTRIG
Returns the current trigger button status.
Trigger button ID in [Ace]
Returns 0 in [Ace] if not pressed, 255
otherwise.
AF

GTPAD
Checks the cur r ent touch PAD status.
ID in lAce]
Value in [Ace]
All

GTPDL
Returns the value of the paddl e .
Paddle ID i n [Ace]
Value in [Ace]
All

125

ADVANCED PROGRAMMING GUIDE

COMMENT %

The following routines are used to access the cassette tape.

%
.
I

; Nam e :
Function:
Entry :
Returns :
Modifies:

i
OOEl ENT TAP ION

.
I
•
I Name :

Function:
Entry :
Returns:
Modif ies:

;
OOE4 ENT TAP IN

Name:
Function:
Entry :

; Returns:
Modifies:

.
,

OOE7 ENT TAP IOF

Name:
; Function:

Entry :

Returns:
Modifies:

;
OOEA ENT TAPOON

Name:
Function:

; Entry :
; Returns:
; Modifies:
;

OOED ENT
;
; Nam e :

TAPOUT

; Function:
; Entry :
; Returns:
; Modifies:
.
,

OOFO ENT TAPOOF

TAP ION
Sets motor on and reads header from tape.
None
Carry flag set if aborted.
All

TAPIN
Inputs from tape.
None
Data i n [Ace] , carry flag set if aborted.
All

TAPIOF
Stops reading from tape.
None
None
None

TAPOON
Sets motor on and writes header block to
cassette.
[Ace] holds non-0 value if a long header
desired, 0 if a short header desired.
Carry flag set if aborted.
All

TAPOUT
Outputs to tape.
Data to be output in [Ace]
Carry flag set if aborted.
All

TAPOOF
Stops writing to tape .
None
None
None

126

ADVANCED PROGRAMMING GUIDE

.
I

; Name:
Function:
Entry :

; Returns:
; Modifies:
.
I

OOF3 ENT STMOTR

STfi)TR
Starts the cassette motor.
0 in [Accl to stop, 1 to start, 255 to fl ip.
None
AF

127

ADVANCED PROGRAMMING GUIDE

COMMENT %

The following routines are used to handle queues.

%
;
; Name :
; Function:
; Entry :
; Retur ns :
; Modifies:
;

OOF6 ENT LFTQ

Name :
; Function:

Entry :
Returns:

; Modifies:
•
'

OOF9 ENT PUTQ

LFTQ
Returns the number of bytes left in the queue.

PUTQ
Places a b¥te in the queue.

128

ADVANCED PROGRAMMING GUIDE

COMMENT %

The following routines are used by the GENGRP and ADVGRP
modul es.

; Name:
; Function:
: Entry :
; Returns:
; Modif ies:
;

OOFC ENT RIGHTC
.
t

; Nam e :
; Function:
; Entry :
; Returns:
; Modifies:
. ,

OOFF ENT LEFTC

Name :
Function:
Entry :

; Returns :
. , Modifies:
.
I

0102 ENT UPC
;
; Nam e :
; Function:
; Entry :

Returns:
Modifies:

;
0105 ENT TUPC

i
. ; Name:
; Function:
; Entry :
. Returns: ,
. Modifies: ,
. ,

0108 ENT OOWNC

Name :
; Function:
; Entry :
; Returns:
; Modif ies:
.
I

OlOB ENT
.
I

TOOWNC

RIGHTC
Moves one pixel right.

LEFTC
Moves one pixel left.

UPC
Moves one pixel up.

TUPC
Moves one pixel up.

DOWNC
Moves one pixel down.

TDOWNC
Moves one pixel down.

129

ADVANCED PROGRAMMING GUIDE

i Name:
i Function:
; Entry :
; Returns :
; Modifies:
;

OlOE ENT

Name:

SCALXY

; Function:
; Entry :
; Returns:
; Modifies:
;

0111 ENT
.
I

; Name:

MAPXYC

Function:

; Entry :
; Return s :
; Modifies:
1

0114 ENT
.
I
; Name:

FETCHC

1 Function:
; Entry :
; Retur n s :
; Modifi e s :
;

0117 ENT STOREC
;

Name:
; Function:

Entry :
Retur ns :

; Modifies:
;

OllA ENT
.
I

; Name:

SETATR

; Function:
; Entry :
; Returns:
; Modif ies:
;

0110 ENT

Name:

READC

Function:
; Entry :

Retur ns:
; Modif ies :
.
I

SCALXY
Scales the X-Y coordinates.

MAPXYC
Maps the coordinate to the phy sical address.

FETOIC
Fetches current phy sical address and mask

pattern.
None
Address in [HL) , mask pattern in [Accl
A, HL

STOREC
Stores phy sical address and mask pattern.
Address in [HL] , mask pattern in [Ace)
None
None

SETATR
Sets attribute by te.

READC
Reads attribute of cur r ent pixel .

SETC
Sets current pixel to the specified attribute.

130

ADVANCED PROGRAMMING GUIDE

0120 ENT SETC
.
I
1 Name :
; Function:
; Entry :
; Returns:
; Modifies:
;

0123 ENT
.
I

; Name:

NSETCX

; Function:
; Entry :
; Returns:
; Modifies:
.
I

0126 ENT
;
; Name :

GTASPC

; Function:
; Entry :
; Returns :
; Modifies:
;

0129 ENT
;
; Nam e :

PNTINI

; Function:
Entry :

; Returns:
; Modifies:
;

012C ENT
i
; Name:

SCANR

Function:
Entry :
Returns:

; Modifies:
.
,

Ol2F ENT SCANL

NSETCX
Sets pixels horizontally.

GTASPC
Returns the aspect ratio.
None
DE , HL
DE, HL

PNTINI
Initializes the PAINT function.

SCANR
Scans pixels to the right.

SCANL
scans pixels to the left.

131

ADVANCED PROGRAMMING GUIDE

COMMENT %

The following routines are additi onal entries.

'
. ,
. , Nam e :
; Function :
; Entry :
• ,
. Returns: I

Modifies:
.
I

0132 ENT
;

Name :

CHGCAP

; Function:
; Entry :

Returns:
; Modif ies:
;

0135 ENT

Name :

CHGSND

: Function:
.
I

: Entry :
; Returns:
; Modif ies:
i

0138 ENT RSLREG

; Name:
. , Function :
. , Entry :
: Returns:
: Modifies:
;

013B ENT WSLREXi
. ,

Name:
Function:

; Entry :
; Returns:
; Modif ies:
. ,

013E ENT RDVDP

Name:
; Function:
• ,
. Entry : I

; Returns :

Modifies:

CHGCAP
Changes the status of CAP l amp.
0 in [Accl to turn off the lamp, non-0
otherwise •

None
AF

CBGSND
Changes the status of the 1 bit sound port.
o in lAce] to turn off , non-0 otherwise.
None
AF

RSLREXi
Reads the current output to the primary slot
register •

None
Result in [Ace]
A

WSLREXi
Writes to the primary slot register.
Value in (A eel
None
None

RJJIIDP
Reads the VDP status register.
None
Data in [Ace]
A

SNSMAT
Returns the status of a specified
keyboard matrix.
Row t in [Ace]
Status in [Ace] , co.r responding bit
to 0 if a key is being pressed.
AF

132

row of a

is reset

ADVANCED PROGRAMMING GUIDE

0
I

0141 ENT
. ,

Name :

SNSMAT

; Function:
;

Entry :
; Returns :
; Modifies:
; Note :
0 ,
;

0144 ENT

i Name:

PHYDIO

; Function:
i Entry :
; Returns:
. Modifies: ,
; Note :

;
0147 ENT

.
I

; Name :

FORMAT

; Function:
Entry :

; Returns:
; Modifies:
.
I

014A ENT

Name:

ISFLIO

Function:
; Entry :

Returns:
; Modifies:

. ,

;

Note :

0140 ENT OUTDLP

i Name :
; Function:
; Entry :
•
I Returns:
; Modi£ ies :

Note :
;

0150 ENT GE'I'VCP

PHYDIO
Performs operation for mass-storage dev ices
such as disks.

In the minimum conf iguration, only a hook is
prov ide do

FORMAT
Initializes mass-storage devices.

In the minimum conf iguration, only a hook i s
provided.

ISFLIO
Checks if device I/O is being done.
None
Non- zero i f so, zero otherwise.
AF

OUTDLP
Outputs to the line printer.
Code in [Ace]
None
F
This entry differs from LPTOUT in that:

1) TABs are expanded to spaces,
2) Hi ragana and graphics are converted when

a non-MSX printer is in use,
3) A j ump to ' Device I/0 error • is made when

aborted.

G E'IVCP

Used only to play music in the background.

133

ADVANCED PROGRAMMING GUIDE

Name:
; Function:
; Entry :
; Returns :
; Modifies:

.
I

Note :

0153 ENT

Name:

GETVC2

; Function:
; Entry :

Returns :
; Modifies:
;

0156 ENT KILBUF
i
; Name :
: Function:

; Entry :
; Returns :
; Modif ies:
.
I

0159 ENT
.
I

CALBAS

GE'IVC2

Used only to play music in the background.

KILBUF
Clears the keyboard buffer.
None
None
HL

CALBAS
Performs far_cal l (i . e. , inter-slot cal l) into
the BASIC interpreter.
Address in [IXl

; The follow ing is a patch area for BIOS. It is placed here to
; make it easier to add new entry vectors.
;

HOLE 90

134

ADVANCED PROGRAMMING GUIDE

2 . 2 . 2 Work Area

;
1 The following short routines perform the inter-slot read/

write and call functions •

•
,

.
,

PPI . AW=a&BI OlOIOOO

; Read primitive
1

F380 RMB (RDPRIM, 5)
OUT
MOV
JMPR

.
I

; Write primitive
;

F385 RMB (WRPRIM, 7)
OUT
MOV

WRPRMl: MOV
OUT
RET

;
; Call primitive
;

F38C RMB (CLPRIM, 1 4)
OUT
EXAF
CALL
EXAF
POP
OUT
EXAF

RET
IX
PCHL

F39A RMB (USRTAB, 2 0)
DW
DW
00
JliJ
DW
DW
DW
tw
IW
ow

F3AE RMB (LINL40 ,1)
DB

F3AF RMB (LINL3 2 , 1)
DB

F3BO RMB (LINLEN, 1)
DB

PPI , N/l
E , M
WRPRMl

PPI . AW
M, E
A, D
PPI . AW

; ASH Write to PPI Port A

1 Select primary slot
; Read fr om slot
; Restore current setting

; Select primary slot
;Write to slot
; Load current setting
;Restore current setting

PPI . AW ; Select primary slot
; Restore [Accl and flags

CI,PRIM+l2 ; Perform indirect call by I X
; Save possible returned value

PSW ; Get old slot status
PPI . AW ;Restore i t

FCERR
FCERR
FCERR
FCERR
FCERR
FCERR
FCERR
FCERR
FCERR
FCERR

3 9

LINLN

LINLN

135

; Restore possible returned
;value

; L ine length

ADVANCED PROGRAMMING GUIDE

F3Bl RMB (CRTCNT, 1)
DB 2 4 ;L ine count

F3B2 RMB (CLMLST, 1)
DB 1 4

;
Beginning of MSX-specific work area

;
F3B3 RMB (TXTNAM, 2)

OWl &B00000000000000+$CODE ; OO O O H
F3BS RMB (T.XTCOL , 2)

OWl &B0000000000000 0+$CODE ; Unused
F3B7 RMB (TXTCGP, 2)

OWl &B0010000000000 0+$CODE ; OBOOH
F3B9 RMB (TXTATR, 2)

DWl &B00000000000000+$CODE . Unused ,
F3BB RMB (TXTPAT, 2)

DWl &B00000000000000+$CODE ; Unused
. ,

F3BD RMB(T32NAM, 2)
OWl &B0110000000000 0+$CODE ; 1800H

F3BF RMB (T3 2COL, 2)
OWl &Bl 0000000000000+$CODE ; 2 0 0 0 H

F3Cl RMB (T32CGP, 2)
DWl &B0000 0000000000+$CODE ; OO O O H

F3C3 RMB (T3 2ATR, 2)
DWl &B011011 0000000 0+ $CODE ; lBO O H

F3CS RMB (T32PAT, 2)
OWl &Blll00000000000+$CODE ; 380 0 H

;
F3C7 RMB (GRPNAM, 2)

DWl &B01100000000 000+ $CODE ;1800H
F3C9 RMB (GRPCOL, 2)

OWl &Bl 0 000000000000+$CODE ;2000H
F3CB RMB (GRPCG P, 2)

DWl &B00 000000000000+$CODE ; OOOOH
F3CD RMB (GRPATR, 2)

DWl &B0110110000000 0+$CODE ; lBOOH
F3CF RMB (GRPPAT, 2)

DWl &Blll00000000000+$CODE ; 3 800H . ,
F3Dl RMB (MLTNAM, 2)

OWl &B0010000000000 0+$CODE ; 0800 H
F3D3 RMB (MLTCOL, 2)

DWl &B00000000000000 +$CODE . Unused ,
F3DS RMB (MLTCGP, 2)

DWl &B0000000000000 0+ $CODE ; OOOOH
F3D7 RMB (MLTATR, 2)

DWl &B0110110000000 0+ $CODE ; lBOOH
F3D9 RMB (MLTPAT, 2)

DWl &Blll0000000000 0+$CODE ; 3 80 0 H
;

F3DB RMB (CL IKSW, 1)
DB 1

F3DC RMB (CSRY, 1)
DB 1 ;C ursor position Y

136

ADVANCED PROGRAMMING GUIDE

F3DD RMB (CSRX, 1)
DB

F3DE RMB (CNSDFG , 1)
DB

1

0

; Cursor position X

; Function key display switch

Save area for the VDP registers
.
I

F3DF RMB (RGO SAV , 1)
DB

F3EO RMB (RGl SAV , 1)
DB

F 3 El RMB (RG2 SAV I l)
DB

F 3 E2 RMB (RG3 SAV , 1)
DB

F3E3 RMB (RG4 SAV , 1)
DB

F3E4 RMB (RGS SAV , 1)
DB

F 3E5 RMB (RG6 SAV , 1)
DB

F 3 E6 RMB (RG7 SAV , 1)
DB

F 3 E7 RMB (STATFL, 1)
DB

.
I

F 3 E8 RMB (TRG FLG , 1)
DB

F 3 E9 RMB (FORCLR, 1)
DB

F3EA RMB (BAKCLR, 1)
DB

F3EB RMB (BDRCLR, 1)
DB

F3EC RMB (MAXUPD, 3)
JMP

F3EF RMB (MINUPD, 3)
JMP

F3F2 RMB (ATRBYT, 1)
DB

;
F3F3 RMB (QUEUES , 2)

DWl
F3F5 RMB (FRCNEW, 1)

DB
F3F6 RMB (SCNCNT, 1)

DB
F3F7 RMB C REPCNT, l)

DB
F3F8 RMB (PUTPNT, 2)

DWl
F3FA RMB (GETPNT, 2)

DWl
F3FC RMB (CS1 2 0 , 5*2)

.
I

0

&811100000

0

0

0

0

0

0

0

&Bllllllll

1 5 ; Foreground colo r , default i s white

4 ; B ackground color, default i s blue

7 ; Screen border color

$CODE

$CODE

1 5 ; Attribute byte

QUETAB ;Address of QUEUTL queue tables

255

1 ; Interval of keyscan

50

KEYBUF

KEYBUF

137

ADVANCED PROGRAMMING GUIDE

; Some parameters for cassette
i

H EDLEN= 2000 ; L ength of header bits (mark) for short
;header

F406

F408

.
I

The following parameter s are for 1200 baud •

INTERN LOWO l , HIGHO l , LOWll , HIGHll
LOWOl= 83 ;Width of low
HIGHOl= 92 ;Width of high
LOWll = 3 8 ;Width of low
HIGHl l = 45 ;Width of high

state for 0
state for 0
state for 1
state for 1

;

DB LCMOl
DB HIGHOl
DB LCMll
DB BIGHll
DB BEDLEN*2/256

The follow ing parameters are for 2 400
.
,

INTERN LOW02, HIGBO 2 , 1Dll 2 , RIG Hl2
LOW02= 37 ;Width of low state

; 41 6 . 7 usee
HIGH02= 45 ;Width of high state
LGV12= 1 4 ;Width of low state

; 20 8 . 3 usee
HIGH12= 2 2 ;Width of high state

DB LOW02
DB HIGH02
DB LOW12
DB HIGH12
DB HEDLEN*4/256

RMB (LCM , 2)

baud.

for 0

for 0
for 1

for 1

DB LC.WOl ; Default 1200 baud
DB HIGHOl

RMB (HIGH, 2)
DB LOWll
DB HIGHll

F40A RMB (HEADER, 1)
DB HEDLEN*2/256 ;Default 1200 baud

F40B RMB (ASPCTl , 2)
DWl $CODE+256 ; 256/aspect ratio

F40D RMB (AS PCT2 , 2)
DWl $CODE+256 ; 256*aspect ratio

.
,

1200Hz-

2400Hz-

ENDPRG must be the last one which needs initializing
;

F40F RMB (ENDPRG, 5)
DB

;
" : " ;Dummy program end for RESUME NEXT

; End of initialized constants
.
,
INTERN INILEN
INILEN= ENDPRG+l- INIRAM ;Length of initialized data

138

ADVANCED PROGRAMMING GUIDE

F414 RMB (ERRFLG, 1)
F415 RMB (LP!'POS, 1)

F416 RMB (PRTFLG, 1)
F417 RMB (NTMSXP, 1)
F418 RMB (RAWPRT, 1)
F419 RMB (VLZADR, 2)
F41B RMB (VLZDAT, 1)
F41C RMB (CURLIN, 2)

ZX== Z X+l
F41F RMB (KBUF, KBFLEN)
F55D RMB (BUFMIN, 1)

FSSE RMB (BUF, BUFLEN+3)

F660 RMB (ENDBUF, 1)
F661 RMB (TTYPOS, 1)
F662 RMB (DIMFLG , 1)

F663 RMB (VALTYP, 1)
F664 RMB (OPRTYP, O l

F664 RMB (DORES , 1)

F665 RMB (DONUM, 1)

F666 RMB (CONTXT, 2)

F668 RMB (CONSAV, 1)

F669 RMB (CONTYP, 1)
F66A RMB (CONLO, 8 }
F672 RMB(MEMSIZ , 2 }
F674 RMB (STKTOP, 2 }

F676 RMB (TXTTAB, 2)

; used t o save the error number
; Position of printer head: initially
; 0
;Whether output goes to LPT
; Non-0 if not ' MSX-printer '
;Non-0 if printing is in • raw-mode •
; Address of character replaced by VAL
; Character replaced by 0 by VAL

; This is the crunch buf fer.
; S ince the data pointer always starts
;on commas or terminators, commas (pre
; load or ROM) are used py INPUTs.
; Type in stored here. Direct statements
; execute out of here. Remember " I NPUT"
; destroys BUF. Must be at a lower
;address than DSCTMP, or assi gnment
;of string values i n dir ect statements
;won ' t copy into string space which
; it must.
; Place to stop big l ines
; Store terminal position here
; In getting a pointer to a variable
; i t i s important to remember whether
; i t i s being done for a "DIM" or not.
;DIMFLG and VALTYP must be consecutive
; l ocations.
; Type indicator
; Used to store operator number in the
;extended momentarily before ope rator
;application (APPLOP)
;Whether can or can ' t crunch reserved
;words turned on in the BK when "DATA"
; i s being scanned py CRU NCH, thus un
;quoted strings won ' t be crunched.
; Flag for CRUNCH =0 means number s
;allowed, (floating, INT, DBL) 1 means
; numbers allowed, CRUNCH by calling
; L INGET -1 (37 7) means numbers
; not allowed <scanning variable name> .
; Saved text pointer used by CHRGET to
;save the text pointer after a constant
;has been scanned.
; The saved token for a constant after
;CHRGET has been called.
; Saved constant VALTYPE
; Saved constant VALUE

the stack,
depending

5 0 bytes
a CLEAR

; Highest location in memory
; Top location to be used for
; initially set up by INIT
;on memory siz e to allow for
;of string space . Changed by
; command with arguments.
; Pointer of beginning of text does not

139

ADVANCED PROGRAMMING GUIDE

F67 8 RMB (TEMPPT, 2}

F67A RMB (TEMPST, 3*NOMTMP)
F698 RMB (DSCTMP, 3)

INTERN DSCPTR
DSCPTR• DSCTMP+l

F69B RMB (FRETOP, 2)
F69D RMB (TEMP3 , 2)

F69F RMB (TEMP8 , 2)

F6Al RMB (ENDFOR, 2)

F6A3 RMB (OATLIN, 2)
F6A5 RMB(SUBFLG, 1}

F6A6 RMB (USFLG, 0)
F6A6 RMB (FLGINP, 1)
F6A7 RMB (TEMP, 2)

F6A9 RMB (PTRFLG, 1)

F6AA RMB (AUTFLG, 1)

F6AB RMB (AUTLIN, 2)
F6AD RMB (AUTINC, 2)
F6AF RMB (SAVTXT, 2)

F6Bl RMB (SAV STK, 2)

F6B3 RMB (ERRL IN, 2)
F6B5 RMB(DOT, 2)
F6B7 RMB (ERRTXT, 2)
F6B9 RMB (ONELIN, 2)
F6BB RMB (ONEFLG, 1)

F6BC RMB (TEMP2 , 2)

F6BE RMB (OLDLIN, 2)

; change after being set up by INIT.
; Pointer at first free temporary des
;cr iptor initialized to point to TEMPST
; Storage for NUMTMP temp. descriptors
; String functions build answer
;descr iptor here must be after TEMPST
;and before PARMI .

;Where in DSCTMP str ing address stored
; Top of string free space
;Used to store the addr ess of the end
;of string arrays in garbage collection
;and used momentarily by FRMEVL used
; i n EXTENDED by FOUT and user defined
; f unctions and array variable handling
; temporarily.
; 7/3/79 Now used for garbage collection
;not TEMP3 due to confl ict
;Saved text pointer at end of "FOR"
; statement
; DATA LINE I -- remember ERRORS
; Flag whether subscripted variable
;allowed "FOR" and USR-def ined function
;Pointer fetching turn this on before
; calling PTRG ET so arrays won ' t be
;detected. STKINI and PTRGET clear it.

; Flag for INPUT or READ
; Temporary for statement code . NEWSTT
; saves l H , L1 here for INPUT and A c,
; "LET" saves variable pointers here ,
; for "FOR-NEXT" saves i t s text pointer
;here, CLEARC saves [H, L1 here.
; =0 If no l ine numbers converted to
;pointer s , non-zer o if pointers exist.
; Flag to indicate AUTO command in
;progress, =0 if not, non- zero if so.
; Current l ine being inserted by AUTO
; AUTO increment
; Place where NEWSTT saves text pointer
;for "RESUME " statement
; NEWSTT saves stack here before so
;that error recovery can restore the
;stack when an e r ro r occurs.
;Line number where last error occured.
; Keeps current line for edit & LIST
; Text pointer for use by "RESUME•
; L ine to GOTO when an error occurs.
; ONEFLG=l if executing an error trap
; r outine, otherwise 0 .
;Formula evaluator temp. Must be pre
; served by operators used in EXTENDED
;by FOUT and user-defined functions
;array variable handler temporary
; Old l ine number (set up by �c, "STOPn

140

ADVANCED PROGRAMMING GUIDE

F6CO RMB (OLDTXT, 2)

F6C2 RMB (VARTAB , 2)

F6C4 RMB (ARYTAB, 2)

F6C6 RMB (STREND, 2)

F6C8 RMB (DATPTR, 2)

F6CA RMB {DEFTBL, 26}

.
I

:or "END" i n a program) .
; Ol d text pointer . Points at statement
;to be executed next.
; Pointer to start of simple variable
; space. Updated whenever the size of
; the program changes, set t o [TXTTAB l +2
; by SCRATCH (" NEW ") •

; Pointer to beginning of array tabl e.
; Incremented by 6 whenever a new simple
;variabl e is found, and set to [VARTAB l
; by CLEARC.
; End of storage in use.
;whenever a new array or
;variable i s encountered,
; lVARTAB] by CL EARC.

Increased
a simple

set to

; Pointer to data. Initialized to point
;at the z ero in front of (TXTTAB1 by
; "R ESTORE" which is called by CLEARC,
; updated by execution of a "READ"
; This gives the def ault VALTYP for
;each letter of the alphabet . It is
; set up by "CLEAR" and i s changed by
; "DEFSTR" 1 "DEFINT", "DEFSNG " , "DEFDBL"
;and used by PTRGET when ! t % or
; $ do not follow a variable name •

RAM storage for user-defined function parameter information
.
I

INTERN PRMS IZ
PRMSIZ=="'DlOO

F6E4 RMB (PRMSTK, 2)

F6E6 RMB (PRMLEN, 2)
F6E8 RMB (PARMl , PRMS IZ)
F74C RMB (PRMPRV , 2)

F74E RMB (PRML N2 , 2)
F750 RMB (PARM2 , PRMS IZ)
F7B4 RMB (PRMFLG, 1)
F7B5 RMB (ARYTA2 , 2)

F7B7 RMB (NOFUNS, 1)

F7B8 RMB (TEMP9 , 2)

F7BA RMB (FUNACT, 2)
F7BC RMB (SWPTMP, 8)

F7C4 RMB (TRCFLG, 1)
;

; Number of by tes for def inition block
; Previous def inition block on stack
;block (for garbage collection)
; Number of bytes in the active table
; The active parameter definition table
; Initially PRMSTK, the pointer at the
;prev ious parameter block (for garbage
; collection>
; S ize of parameter block being built
; Place to keep parameters being made
;Used by PTRGET to flag if PARMl has
;been searched
; Stopping point for simple search
; (either [ARYTAB] or PARMl+[PRMLEN])
; Z ero if no functions active. Saves
;T IME in simple search
; G arbage collection temp. to chain
; through parameter blocks.
;Count of active functions
;Value of first "SWAP" variable stored
;here
; Z ero means no trace in progress

; This is the RAM temporary area for the math package routines
.
I

F7C5 RMB (FBUFFR, 43) ;B uffer for FOUT

141

ADVANCED PROGRAMMING GUIDE

F7FO RMB (DECTMP, 2)
F7F2 RMB (DECTM2 , 2)
F7F4 RMB (DECCNT, 1)

Decimal accumulator
.
I

ZX== ZX+l
F7F6 RMB (DAC,

INTERN FACLO
FACLO= DAC+2

1 6)

; U se d by decimal int to float
; U se d by divide
; U sed by divide

; Temporary sign complement

Holding registers for decimal multiplication
.
I

F806 RMB (HOLDS , 48)
F83 6 RMB (HOLD2 , 8)
F83 E RMB (HOLD, 8)

.
I

; Argument accumulator
.
,

Z X== Z X+l
F847 RMB (ARG ,
F857 RMB (RNDX,

1 6)
8)

; 80 * X
; 2*X
; l* X

; Temporary sign complement

; Holds last random number generated

142

ADVANCED PROGRAMMING GUIDE

SUBTTL Data Area
.
I

; set up by initialization. Unchanged by disk code.
;

F BSF RMB (MAXFI L , 1)
F860 RMB (FILTAB, 2)
F862 RMB (NULBUF, 2)

.
I

; H ighest legal file number
; Points to adress of file data
; Points to file 0 buffer

; Set up by file I drive selection routines.
; cleared elsewhere.

Only PTRFIL is

;
F864 RMB (PTRFIL, 2)

•
,

; Misc.
;

F866 RMB (RUNFLG, 0)
F866 RMB (FILNAM, l l)
F871 RMB (FILN�� rl 1)
F87C RMB (NLONLY, 1)

;

; Points to file data of selected file

; Non- zero for RUN after LOAD
;Holds f il ename for DIRSRC, from NAMSCN
;Holds other fil ename for NAME
; Non-zero when l oading program

Set up by NULOPN and B SAV E, used by BSAVE and CREATE •
.
I

F87D RMB (SAVEND, 2)
F87F RMB (FNKSTR, 16*10)
F91F RMB (CG PNT, 3)

.
I

F922 RMB (NAMBAS , 2)
F924 RMB (CG PBAS , 2)
F926 RMB (PATBAS , 2)
F92 8 RMB (ATRBAS, 2)

;
; For GENGRP
;

F92A RMB (CLOC, 2)
F92C RMB (CMASK , 1)
F92D RMB (MINDEL , 2)
F92F RMB (MAXDEL , 2)

.
I

; For CIRCLE
;

F931 RMB (ASPECT , 2)
F93 3 RMB (CENCNT , 2)
F93 5 RMB (CL INEF , 1)
F936 RMB (CNPNTS , 2)
F93 8 RMB (CPLOTF, l)
F93 9 RMB (CPCNT, 2)
F93B RMB (CPCNT8 , 2)
F93D RMB (CRCSU M, 2)
F93F RMB (CSTCNT, 2)
F941 RMB (CSCLXY , l)
F942 RMB (CSAVEA, 2)
F944 RMB C CSAVEM,1)
F945 RMB (CXOFF, 2)
F947 RMB (CYOFF, 2)

;

; End of binary or memory image save
; Function key string save area
;Where character pattern is held in ROM

; Base of current name table
; B ase of current cgen table
; B ase of curr ent sprite pattern table
; B ase of curr ent sprite attribute table

; Aspect ratio for circle
; End count
; Flag to draw line to center
; Points to plot
; Plot pol arity flag
; 1/ 8 of number of points in circle
; Number of pts in circle
; Ci rcle sum
; Start count
; Scaling of x and y
; ADVGRP C save area
; ADVGRP C save area
; X offset f rom center save location
; Y offset save location

143

ADVANCED PROGRAMMING GUIDE

; For PAINT
.
I

F949 RMB (LOHMSK,l)
F94A RMB (LOHDIR,l)
F94B RMB (LOHADR, 2)
F94D RMB (LOHCNT,2)
F94F RMB (SKPCNT, 2)
F951 RMB (MOVCNT, 2)
F953 RMB (PDIREC, l)
F954 RMB (LFPROG , l)
F955 RMB (RTPROG , l)

; For MACLNG
1

F956 RMB (MCLTAB , 2)
F958 RMB (MCLFLG , l)

;

;RAM save area for left overhang

; Skip count
; Move count
; Paint direction

; I ndicates PLAY/DRAW

; QUEUES for PLAY statement
. •

F959 RMB (QUETAB, "D24)
F971 RMB (QUEBAK, "D4)

MUSQLNz : "Dl28
RSIQLN• : "064

F97 5 RMB (VOICAQ , MU SQLN)
F9F5 RMB (VOICBQ, MUSQLN)
FA75 RMB (VOICCQ , MU SQLN)
FAFS RMB(RS2IQ, RSIQLN)

;
; Music stuff
.
,

FB3 5 RMB (PRSCNT, l)

FB3 6 RMB (SAVSP, 2)
FB3 8 RMB (VOICEN, 1)
FB39 RMB (SAVVOL , 2)
FB3 B RMB (MCLLEN , l)
FB3C RMB (MCLPTR, 2)
FB3 E RMB (QUEUEN,l)

;
FB3F RMB (MUSICF, l)
FB40 RMB (PLYCNT, l)

; 4 queues (6 bytes each)
; For BCKO
; Size of voice queues

;Voice a queue
;Voice b queue
;Voice c queue
;RS23 2 input queue

;Dl-DO = number of strings pa r sed
;D7=0 if f i rst pass, 1 if not
; Save main stack pointer During play
; Set current voice being parsed
; Save volume for pause

;Used by intime-action-dequeue

; Musi c inte r r upt flag
; Number of play statements queued for
;background task

: Per voice Static Data Area Displ acement Definitions
;

METREX=: O
VCXLEN= : METREX+2
VCXPTR• :VCXLEN+l
VCXSTP= :VCXPTR+2
OLENGX•:VCXSTP+2
NTICSX=:OLENGX+l
TONPRX=: NTICSX+2
AMPLTX•: TONPRX+2
ENVPRX•:AMPLTX+l
OCTAVX= : ENVPRX+2

;T imer countdown
; MCLLEN for this voice
; MCLPTR for this voice
; S ave top of stack pointer
;Number of bytes to be queued
; New countdown
; Tone period
; Ampl itude/shape
; Envel ope period
; Octave

144

ADVANCED PROGRAMMING GUIDE

NOTELX=:OCTAVX+l
TEMPOX= : NOTELX+l
VOLUMX•: TEMPOX+l
ENVLPX•:VOLUMX+l
MCL STX=: ENVLPX+�Dl4
MCL SEX=: MCLSTX+3
VCBSIZ = : MCLSEX-METREX+l

FB41 RMB (VCBA, VffiSIZ)
FB66 RMB (VCBB, VCBSIZ)
FBSB RMB (VCBC, VCBSIZ)

; Note l ength
� Tempo
;Vol urne
; Envelope shape
; Stack save area
; Initial stack
;Voice static buffer siz e
; Static data for voice 0
; Static data for voice 1
; Static data for voice 2

1
1

FBBO

Area between here and MUSICF
i s called.

i s cleared everytime a IGICIN

FBBl
FBB2
FBCA
FBCC
FBCD

RMB (EN STOP, 1)
RMB (BASROM, 1)
RMB (LINTTB , 2 4)
RMB (FSTPOS, 2)
RMB (CODSAV , 1)
RMB (FNKSW I , l)

FBCE RMB (FNKFLG , l O)

FBD8 RMB (ONG SBF,l)
FBD9 RMB (CLIKFL , l)
FBDA RMB (OLDKEY, ll)
FBES RMB C NEWKEY, ll)

INTERN SFTKEY
SFTKEY= NEWKEY+6

FBFO RMB (KEYBUF , 4 0)
FC18 RMB (BUFEND , O)
FC18 RMB (LINWRK, 40)
FC40 RMB (PATWRK, 8)
FC4 8 RMB (BOTTOM, 2)
FC4A RMB (HIMEM, 2)
FC4C RMB (TRPTB L , 3 *NUMTRP)
FC9A RMB (RTYCNT, l)
FC9B RMB (I NTFLG , l)
FC9C RMB (PADY, l)
FC9D RMB (PADX, 1)
FC9E RMB { JIFFY, 2)
FCAO RMB (IN'IV AL, 2)
FCA2 RMB (INTCNT, 2)
FCA4 RMB (LOWLIM, l)
FCAS RMB (WINWID , l)
FCA6 RMB { GRPHED, l)
FCA7 RMB { ESCCNT, l)
FCA8 RMB (INSFLG , l)
FCA9 RMB (CSRSW, 1)
FCAA RMB (CSTYLE, l)
FCAB RMB (CAPST, 1)
FCAC RMB C KANAST, l)
FCAD RMB (KANAMD, 1)
FCAE RMB (FLBMEM, l)
FCAF RMB (SCRMOD, l)

; Non- zero if warm start enabled
; Non- zero if BASIC text is in ROM
; Line terminator tabl e
; First position when entered INLIN
; Code save area for cursor
; Indicates which function
;dislayed

key is

; Indicates key is assigned to
;device

event

; Global event flag

; Ol d key status
; New key status

; GR, CTRL , SH IFT status
; Key code buffer
; End of KEYB UF
; S cratch area for screen handler
; Scratch area for pattern converter
; B ottom of equipped RAM
;H ighest available memory
; Trap table

; U sed when reading cassette
;Used when reading cassette
; Flag f or graphic character
; Escape sequence counter
; Insert mode flag
; Cursor display switch
; Cursor style
; Capital status
; Kana lock status
; Non-0 i f J IS
; 0 if loading BASIC program
; Screen mode

145

output

ADVANCED PROGRAMMING GUIDE

FCBO RMB (OLDSCR, l)
FCBl RMB (CASPRV , l)
FCB2 RMB (BRDATR, l)
FCB3 RMB (GXPOS, 2)
FCBS RMB (GYPOS, 2 >
FCB7 RMB (GRPACX, 2)
FCB9 RMB (GRPACY , 2)
FCBB RMB (DRWFLG , l)
FCBC RMB (DRWS CL , l)
FCBD RMB (DRW ANG , 1)

For BLOAD and BSAVE
;

FCBE RMB (RUNBNF , l)
FCBF RMB (SAV ENT, 2)

.
,

; (0-ext , l-text , 2 - hires, 2-multi>
; Screen mode save area
; Previous character save area for CAS :
; Border color for PAINT

; G raphic accumulater

; Draw scal e factor - 0 means no scaling
;Draw angle (0-3)

;Doing B LOAD, BSAVE or not
; Start address for BSAVE

; Information save area for slots
;

FCCl RMB (E XPTBL, 4)

FCC5 RMB (SLTTBL, 4)

FCC9 RMB (SLTATR, 64)
FD0 9 RMB (SL'IWRK, 1 2 8)

;

; Flag table for expanded slot
;Holds 2 5 5 if expanded
; Current setting for each expanded
; slot register
; H olds attributes for each slot
; H olds work area specific for each slot

; For CALL statement and device expander
;

FD89 RMB (PROCNM, l6)

FD99 RMB (DEVICE, 1)

; Name of expanded statement terminated
; by 0
;The device ID for a cartridge (0 to 3)

146

ADVANCED PROGRAMMING GUIDE

COMMENT %

The following are definitions of hooks and their functions:

%

Name
Location
Purpose

GSX== ZX
FD9A RMB (HOKJMP , O)

. ,

- Name of hook
- Location in module it i s used
- Use

Name: H. KEYI
;
.
I
.
I
•
I

FD9A

i
. ,
;
. ,

FD9F
;
;
; . ,

. ,
FDA4

;

;

. ,
FDA9

i

.
I
. ,
•
,
. ,

Location:
Purpose :

RMB (H . KEYI , S)

Name:
Location:
Purpose :

RMB (H . TI MI , S)

Nam e :
Location:

Purpose :

RMB (H. CHPU, 5)

Name:
Location:

Purpose :

RMB (H . DSPC , S)

Name:
Location:

Purpose :

FDAE RMB { H . ERAC, S)

Name :
; Location:
. ,

• ,
Purpose :

FDB3 RMB (H. DSPF , S)
;

MSXIO, at the beginning of interrupt handl er
Does additi onal interrupt handling such as
RS-23 2C •

H . TIMI
MSXIO, in timer interrupt handler
Allows other interrupt handling invoked by
timer.

H . CH PU
MSXIO, at the beginning of CHPUT {CHaracter
outPUT) routine •

Allows for other consol e output dev ices.

H . DSPC
MSXIO, at the beginning of DSPCSR (DiSPl ay
CurSoR) routine.
Allows for other console output dev ices.

H. ERAC
MSXIO, at the beginning of ERACSR (ERAse
CurSoR) routine •

Allows for other console output dev ices.

H . DSPF
MSXIO, at the beginning of DSPFNK (Di SPlay
FuNction Key) routine •

Allows for other console output dev ices.

147

ADVANCED PROG RAMMING GUIDE

; Nam e :
Location:

. ,

. , Purpose :
;

FDBB RMB (H. ERAF, 5)

; Nam e :
i Location:
;
; Purpose :

FDBD RMB (H. TOTE, 5)
.
I

; Name:
i Location:
;

Purpose :
. ,

FDC2 RMB (H . CHGE, 5)
;
; Name:
. Location: ,
;

Purpose:
.
I

FDC7 RMB (H. INIP, 5)
.
I
.
I Name:
. Location: I

;
Purpose :

FDCC RMB (H. KEYC, 5)
. ,
; Nam e :

Location:

Purpose :
;

FDDl RMB (H. KYEA, 5)
;
; Name:

Location:
;
; Purpose :
;

FDD6 RMB (H . NMI , 5)
. ,

Name :
Location:

Purpose :
.
I
.
I

H . ERAF
MSXIO, at the beginning of ERAFNK { ERAse
FuNction Key) routine •

Allows for other console output dev ices.

H . TOTE
MSXIO, at the beginning of TOTEXT (force
screen TO TEXT mode) routine.
Allows for other console output dev ices.

H. CHGE
MSXIO, at the beginning of CBGET (CHaracter
GET) routine.
Allows for other console input dev ices.

H . INIP
MSXIO, at the beginning of IN I PAT (INitial iz e
PATtern) routine.
Allows for other character sets.

H . KEYC
MSXIO, at the beginning of KEYCOD (KEY
CODe r) routine.
Allows for other key assignments.

H . KYEA
MSXIO, at the beginning of KYEASY (KeY EASY)
routine.
Allows for other key assignments.

H . NMI
MSXIO, at the beginning of NMI (Non Maskable
Interrupt) routine.
Allows for NMI handl ing.

H . PINL
MSXINL, at the beginning of PINLIN (Program
INput LINe) routine.
Allows other console input dev ices or other
input designs to be used •

148

ADVANCED PROGRAMMING GUIDE

FDDB RMB (H . PINL, S)
.
I . Name: I
. Location: I

; Purpose:

;
FDEO RMB (H. QINL , S)

• ,
; Nam e :
. Location: I
.
I

; Purpose :

. ,
FOES RMB (H. INLI, 5)

Nam e :
Location:

Purpo se :

FDEA RMB (H. ONGO, S }
;

Name :
Location:

Purpose :
i

FDEF RMB (H. DSKO, 5 }
;
•
I Name:

Location:

Purpose :
. ,

FDF4 RMB (H. SETS, 5)
.
I
• I Name:
•
I Location:

Purpose :
. ,

FDF9 RMB (H. NAME, 5)

; Name:
Location:

Purpose:

FDFE RMB (H. KILL , S)

Nam e :
. , Location:

H . QINL
MSXINL, at the beginning of Q INLIN (Question
mark and INput LINe} routine.
Allows other console input dev ices or other
input designs to be used.

H . INLI
MSXINL, at the beginning of INLIN (I Nput
LINe) routine •

Allows other console input devices or other
input designs to be used •

H . ONGO
MSXSTS, at the beginning of ONGOTP (ON GOTo
Procedure) routine.
Allows for other console input dev ices to be
used.

H . DSKO
MSXSTS, at the beginning of DSKO$ (DiSK
Output) routine.
Installs the disk driver.

H . SETS
MSXSTS, at the beginning of SETS (SET
attributeS) routine.
Installs the disk driver.

H. NAME
MSXSTS, at the NAME (r eNAME) routine •

Installs the disk driver.

H. KILL
MSXSTS, at the beginning of KILL (KILL
file) routine.
Installs the disk driver.

H. IPL
MSXSTS, at the beginning of IPL (Initial
Program Load) routine.

149

AIJV ANCED PROGRAMMING GUIDE

; Purpose:
.
I

FE03 RMB (H. IPL, 5 }
. ,
; Name:
; Location:
;
; Purpose:
;

FE08 RMB (H. COPY, 5)
. ,
; Name:
. , Location:
;
; Purpose:
.
I

FEOD RMB (H. CMD, 5)
.
I . Name: I

Location: .
I

Purpose:
•
I

FE12 RMB (B . DSKF, S)
;

Name:
Location :

Purpose :
.
I

FE17 RMB (H. DSKI , S)

Name:
.
I Location: .
I

Purpose:
;

FElC RMB (H . ATTR, 5)

; Name:
i Location:

Purpose :
. ,

FE21 RMB (H. LSET, 5)

Name:
; Location:

; Purpose :
.
I

FE26 RMB (H. RSET, 5)

.
I Name:
.
I Location:

Installs the disk driver.

H . COPY
MSXSTS, at the beginning of COPY (COPY
f il e) routine.
Installs the disk driver.

H. CMD
MSXSTS, at the beginning of CMD (CoMmanD)
routine.
Installs the disk driver.

H . DSKF
MSXSTS , at the beginning of DSKF (DiSK Free)
routine •

Install s the disk driver .

H . DSKI
MSXSTS, at the beginning of DSKI (DiSK
Input) routine.
Installs the disk driver.

H . ATTR
MSXSTS , at the beginning of ATTR$ (ATTRibute)
routine •

Installs the disk driver.

H . LSET
MSXSTS , at the beginning of LSET (Left SET)
routine.
Installs the disk driver •

H . RSET
MSXSTS, at the beginning of RSET (Right SET)
routine.
Install s the disk driver.

H . FIEL
MSXSTS , at the beginning of FIELD (FIELD)

150

AfN ANCED PROGRAMMING GUIDE

. , routine •

; Purpose : Installs the disk driver.
. ,

FE2B RMB (H . FIEL , S)
;

Name: H . MKI $
; Location: MSXSTS, at the beginning of MKI $ (MaKe I n t >

; routine.
Purpose: Installs the disk driver.

. ,
FE30 RMB (H. MKI $, 5)

Name: H. MKS $
Location: MSXSTS, at the beginning of MKS$ (Make

Single) routine.
. , Purpose : Installs the disk driver.
1

FE35 RM:B (H . MKS $, 5)
. ,
; Name: H . MKD$
.
I Location: MSXSTS, at the beginning of MKD$ (Make
.
I Doubl e) routine.
; Purpose: Installs the disk driver.
;

FE3A RMB (H. MKD $, 5)

Name: H . CV I
Location: MSXSTS , at the begi nning of 0/I (Convert

. Int) routine • I . , Purpose : Installs the disk driver.
;

FE3F RMB (H . CV I , 5)
;
. Name: H . 0/S ,
; Location: MSXSTS, at the beginning of 0/S (Convert
i Sng) routine.

Purpose : Instal l s the disk driver.
;

FE44 RMB (H . CVS,5)
• I
. ' Name : H . CVD
. , Location: MSXSTS, at the beginning of OlD (Convert
. , Dbl) routine •

i Purpose: Installs the disk driver.
;

FE49 RMB (H. CVD, 5)

151

ADVANCED PROGRAMMING GUIDE

Name:
Location:

; Purpose:
. ,

FE4E RMB (H. GETP, 5)
. ,
.
I Name:

Location:
Purpose :

;
FE53 RMB (H. SETF, 5)

;
; Name:
. Location: I

Purpose :
;

FE58 RMB (H. NOFO , 5)

Name:
; Location:
. Purpose : I

;
FE5D RMB (H . NULO, 5)

•
I Name:

Location:
. , Purpose :
.
I

FE62 RMB (H. NTFL , 5)
•
I
•
I Name:
• , Location:

. Purpose : I

.
I

FE67 RMB (H. MERG, 5)
•
I . Name: ,
; Location:
; Purpose :
;

FE6C RMB (H. SAVE, 5)

Name:
; Location:
. Purpose : ,
;

FE7 1 RMB (H . BINS, 5)
.
I
.
I Name:
. Location: I
. Purpose : I
.
I

FE76 RMB (H. BINL , 5)

H . GETP
SPCDSK, at the GETPTR (GET file PoinTeR) .
Installs the disk driver .

H . SETF
SPCDSK, at the SETFIL (SET FILe pointer) .
Installs the disk driver.

H . NOFO
SPCDSK, at the NOFOR (NO FOR clause) routine.
Installs the disk driver.

H . NULO
SPCDSK, at the NULOPN (NULl file OPeN) routine.
Instal l s the disk driver.

H . NTFL
SPCDSK, at the NTFLO (NoT FiLe number 0) .
Installs the disk d r iver.

H . MERG
SPCDSK, at the MERGE (MERGE program files)
routine.
Installs the disk driver.

H . SAVE
SPCDSK, at the SAVE routine.
Installs the disk driver.

H . BINS
SPCDSK, at the BINSAV (BINary SAVe) routine.
Installs the disk driver.

H . BINL
SPCDSK, at the B INLOD (BINary LOaD) routine •

Instal ls the disk driver .

152

ADVANCED PROGRAMMING GUIDE

. Name: ,
Location :

; Purpose :
;

FE7B RMB (H. FILE, S l

; Name:
. Location: ,
. Purpose : ,
. ,

FE80 RMB (H. DG ET, S l

Name:
Location:

. , Purpose :

. ,
FE85 RMB (H . FILO, 5)

Name:
Location:

;
. Purpose : ,
;

FESA RMB (H. INDS , 5)

Name:
•
I Location:

Purpose :
1

FESF RMB (H. RSLF, 5)
i

Name:
; Location:

Purpose :
;

FE94 RMB (H. SAVD, 5)
. ,
. Name: ,
; Location:
i Purpose:
. ,

FE99 RMB (H. LOC, 5)
i
. Name: ,
. Location: ,
; Purpose:
• I

FE9E RMB (H. LOF, 5)

Name:
Location:

.
I Purpose :
• ,

FEA3 RMB (H . EOF, 5)
. ,

H . FILE
SPCDSK, at the FILES command.
Installs the disk driver.

H . DGET
SPCDSK, at the DGET (Disk GET) routine •

Instal l s the disk driver.

H . FILO
SPCDSK, at the FILOUl (FILe OUt 1) routine.
Instal ls the disk driver .

H . INDS
SPCDSK, at the INDSKC (INput DiSK Character)
routine.
Installs the disk driver.

H. RSLF
SPCDSK, to re-select the old drive •

Installs the disk driver.

H . SAVD
SPCDSK, to save the current drive.
Installs the disk driver.

H . LOC
SPCDSK, at the LOC (LOCation) function.
Installs the disk drive r .

H . LOF
SPCDSK, at the LOF (Length Of File) function •

Installs the disk driver.

H . EOF
SPCDSK, at the EOF (End Of File) function.
Installs the disk driver.

153

ADVANCED PROGRAMMING GUIDE

Name:
; Location:
; Purpose:
. ,

FEA8 RMB (H. FPOS, 5)
;

Name:
i Location :

Purpose:
. ,

FEAD RMB (H. BAKU , S)
. ,
. Name: ,
. Location: ,
.
I
.
I Purpose:
;

FEB2 RMB (H. PARD, 5)
;
; Name ;
; Location :
; Purpose :
;

FEB7 RMB (H. NODE , 5)
;
. , Name:
; Location:
; Purpose :
;

FEBC RMB (H. POSD, 5)

Nam e :
Location:

.
I Purpose :
. ,

FECl RMB (H . DEVN, 5)
. ,

Name:
Location:

; Purpose :
;

FEC6 RMB (H. GEND, 5)

Name :
Location:
Purpose :

FECB RMB (H. RUNC, 5)
i
. , Name:

Location :
; Purpose :

FEDO RMB (H. CLEA, 5)

H. FPOS
SPCDSK, at FPOS (File POSition) function.
Installs the disk driver.

H . BAKU
SPCDSK, at the BAKUPT (BAcK UP) routine.
Installs the disk driver.

H. PARD
SPCDEV, at the PARDEV (PARse DEVice name)
routine •

Epands logical device names.

H. NODE
SPCDEV, at the NODEVN (NO DEVice Name) r outine.
Sets other default dev ices.

H . POSD
SPCDEV, at the POSDSK (POSsibly DiSK) routine.
Installs the disk driver.

H . DEVN
SPCDEV, at the DEVNAM (DEVice NAMe) routine.
Expands logical device names.

H . GEND
SPCDEV, at the G ENDSP (GENeral device
DiSPatcher) •

Expands logical device names.

H . RUNC
BIMISC, at the RUNC (RUN Clear) routine.

H. CLEA
BIMISC, at the CLEARC (CLEAR Clear) routine.

154

ADVANCED PROGRAMMING GUIDE

.
I

Name:
; Location:
. ,
; Purpose :
. ,

FEDS RMB (H . LOPD , S)
;

Name:
Location:
Purpose :

FEDA RMB (H. STKE , S)
;
; Name:
; Location:
; Purpose :
;

FEDF RMB (H . ISFL, S l

Name:
Location:
Purpose :

FEE4 RMB (H. OUTD, S)
;
;
;
.
I

J

Name:
Location:
Purpose :

FEE9 RMB (H. CRDO, S)
.
I

;
. ,
;

Name:
Location:

Purpose :

FEEE RMB (H . DSKC, 5)
.
I

Name:
; Location:

Purpose :
.
I

FEF3 RMB (H. DOGR, 5)
;
.
I
. ,
. ,
. ,

Name:
Location:
Purpose :

FEF8 RMB (H . PRG E , 5)
.
I

; Name:
Location:
Purpose :

H . LOPD
BIMISC, at the LOPDFT (LOop and set DeFaulT)
routine •

Uses other defaults for variables.

H. STKE
BIMISC, at the STKERR (STacK ERRor) routine.

H. ISFL
BIMISC, at the ISFLIO (I S FiLe I/0) routine.

H. OUTD
BIO, at the OUTDO (OUT DO l routine.

H . CRDO
BIO, at the CRDO (CRlf DO l routine.

H . DSKC
BIO, at the DSKCH I (DiSK CH aracter Input)
routine.

H . DOGR
GENGRP, at the DOGRPH (DO GRaPH) routine.

H . PRGE
B INTRP, at the PRG END (PRoGram END) routine.

H . ERRP
B INTRP, at the ERRPRT (ERRor PRinT) routine.

155

ADVANCED PROGRAMMING GUIDE

FEFD RMB (H. ERRP, 5)

Name:
Location: B INTRP
Purpose :

;
FF02 RMB (H. ERRF, 5)

Name : H . READ
. Location: B INTRP, at the READY entry. ,

Purpose :
;

FF07 RMB (H. READ, 5)
.
I
; Name: H . MAIN
• Location: B INTRP, at the MAIN entry . I

; Purpose :
;

FFOC RMB (H. MAIN, 5)
;

Name: H. DIRD
. Location: B INTRP, at the DIRDO (DIRect 00) entry. I

; Purpose :
;

FFll RMB (H. DIRD, 5)
.
I
. Name: I

Location: B INTRP
Purpose :

FF16 RMB (H. FINI, 5)

; Name:
; Location: BINTRP

Purpose:
.
I

FFlB RMB (H. FINE, 5)

Name:
Location: B INTRP
Purpose :

;
FF20 RMB (H. CRUN, 5)

Name:
Location: B INTRP

; Purpose :

FF25 RMB (H. CRU S, 5)

Name:
Location: BINTRP

•
I Purpose :
•
I

FF2A RMB (H. ISRE , S)

156

ADVANCED PROGRAMMING GUIDE

.
I
.
I Name :

Location: B INTRP
•
I Purpose :
;

FF2F RMB (H . NTFN, 5)
.
I
. Name: ,

Location: B INTRP
. Purpose : ,
•
I

FF34 RMB (H . NOTR, 5)
;
; Name:
.
, Location: B INTRP
.
, Purpose :
;

FF39 RMB (H. SNGF, 5)
Name :

. Location: B INTRP I

.
I Purpose:
.
I

FF3E RMB (H . N.E.WS, S)

Name:
•
, Location: B INTRP
; Purpose:
•
I

FF43 RMB (H . GONE, 5)

Name:
Location: B INTRP
Purpose :

;
FF48 RMB (H . <BRG, 5)

.
I
•
I Name:
; Location: BINTRP

Purpose :
;

FF4D RMB (H. RETU , 5)

; Name:
; Location: BINTRP

Purpose :
;

FF52 RMB (H. PRTF, 5)
;
; Name:
•
I Location: BINTRP

Purpose :
;

FF57 RMB (H. COMP, 5)
;

157

ADIJANCED PROGRAMMING GUIDE

Name:
Location: B INTRP

. Purpose: I
.
I

FF5C RMB (B. FINP, 5)

Name:
.
I Location: B INTRP
. Purpose : I
.
I

FF61 RMB (H. TRMN, 5)
.
I

Name:
1 Location: BINTRP
; Purpose :
;

FF66 RMB { H. FRME, 5)

. Name: ,

.
I Location: B INTRP
.
I Purpose :
.
I

FF6B RMB { H . NT PL , 5)
.
I
•
I Name:

Location: BINTRP
Purpose :

.
I

FF70 RMB (H. EVAL , 5)
;
.
I Name:
1 Location: B INTRP

Purpose:
;

FF75 RMB (H . OKNO, 5)

. Name: I

Location: B INTRP
; Purpose:
1

FF7A RMB (H. FI NG , 5)

Name: H . ISMI
. Location : BINTRP, at the ISMID$ (I S MID$) routine. I

; Purpose :
;

FF7F RMB (H . ISMI , 5)

.
I Name: B . WIDT
•
I Location : B INTRP, at the WIDTHS (WIDTH} routine.

Purpose :
.
,

FF84 RMB (H. WIDT, 5)
;
; Name: H. LIST

158

ADVANCED PROGRAMMING GUIDE

Location:
Purpose :

FF89 RMB (H . LIST, S)

; Name:
i Location:
.
I Pur pose :
.
I

FF8E RMB (H. BUFL, 5)

Name:
; Location:
i Purpose :
;

FF93 RMB (H. FRQ I, 5)
;
.
I Name:
; Location:
; Purpose :
.
I

FF98 RMB (H. SCNE, 5)

Name:
Location:

.
I
. Purpose : I

;
FF9D RMB (H . FRET, 5)

.
I

; Name :
.
I Location:
. Purpose : ,
;

FFA2 RMB (H . PTRG I 5)

; Name:
Location:

. , Purpose :
i

FFA7 RMB (H. PHYD, 5)
;
.
I Name :
; Location:
. Purpose : ,
i

FFAC RMB (H. FORM, 5)
.
I

; Name :
Location:

.
I Purpose :
.
I

FFBl RMB (H . ERRO, 5)
;
. Name: ,

BINTRP, at the LIST routine.

H . BUFL
B INTRP, at the BUFLIN (BUFfer LINe) routine .

H . FRQI
BINTRP, at the FRQ INT routine.

BINTRP

H . FRET
BISTRS, at the FRETMP (FREe up TeMPoraries)
routine •

H . Pl'RG
BIPTRG, at the PTRGET (PoinTeR GET) routine •

Uses other variable names than default.

H . PHYD
MSXIO, at the PHYDIO (PHYsical Disk I/0) .
Installs the disk driver .

H . FORM
MSXIO, at the FORMAT (disk FORMATter) r outine.
Installs the disk driver.

H . ERRO
BINTRP, at the ERROR routine.
Traps e r r ors f r om appl ication programs •

H . LPTO

159

ADVANCED PROGRAMMING GUIDE

. Location: I

.
I

; Purpose :
.
I

FFB6 RMB (H . LPTO, 5)
.
I

; Name:
. Location: I
.
I
. Purpose : I
.
I

FFBB RMB (H . LPTS, 5)

•
I Nam e :
. Location: I
. Purpose : I
.
I

FFCO RMB (H . SCRE , 5)
.
,
•
I Name :
. Location: I
.
I Purpose :
.
I

FFCS RMB (B. PLAY , 5)
.
I

FFCA RMB (ENIMRK , O)

MSXIO, at the LPTOUT (Line PrinTer OUTput)
routine •

Uses a non-default printe r .

H . LPTS
MSXIO, at the LPTSTT (Line PrinTer STaTus)
routine •

Uses a non-default printer .

H . SCRE
MSXSTS, at the entry to SCREEN statement •

Expands the SCREEN statement.

H . PLAY
MSXSTS, at the entry to PLAY statement •

Expands the PLAY statement.

; End of wor k area.

160

ADVANCED PROGRAMMING GUIDE

2 . 2 . 3 Slot Control

Memory structure of MSX 1

t o

B
A
s
I
c

n 12

<Slot tO expanded> <Slot tl expanded> <Slot t2 expanded> <Slot 13 expanded>

Terminol ogy :

Primary slot :

secondary slot :

Page :

Total : 1024K bytes {16*64K byte s)

Slot enabled by the slot select register in
the 8255 PPI.
Slot enabl ed by the expansion slot register
at OFFFFH.
Memory block (maximum 16K) in each slot. The
slots are divided into four pages (00008 to
3FFFH, 40008 to 7FFF8, 8000H to OBFFFH, and
OCOOOH to OFFFFH) •

161

ADVANCED PROGRAMMING GUIDE

o Minimum configuration

a> Microsoft MSX-BAS IC interpreter at slot tO from OOOOH to 7FFFH .
b) Minimum of 8 K RAM from O EOOOH to OFFFFH in any slot (including

the secondary slot)

o RAM search procedure

MSX-BASIC first searches for available RAM from OBFFFH down
to O BOOOH (including the secondary slots > , then enables the page
with the largest available RAM. If there are more than one such
pages, MSX-BAS IC selects the l eftmost page in the figure above.
MSX-BAS IC next searches for RAM f r om OFFFFH down to OCOOOH, and
does the same procedure. Finally, MSX-BASIC searches for a
continuous RAM block from OFFFFH to BOOOH and sets the system
variable ' BOTTOM ' .

o PROGRAM CARTRIGE search procedure

MSX-BASI C scans all slots (including secondary slots) from
4000H to OBFFFH for a valid ID at the beginning of each page,
collects information, and passes control to each page . The
scan order i s from left to right in the figure above. The
format of the ID and other information are as follows.

Offset from top

+OOOOH r-----------,

ID
+0 002H r-----------1

I INIT l
+0 004H �-----------1

I STATEMENT I
+0 0 0 6 H �-----------1

I D�I� I
+OOOBH �-----------1

I TEXT l
+OOOAH �-----------1

I I
I Reserved I
I l

+OOlOH �-----------�

- The ID i s a two-byte code used to distinguish the ROM
cartridges from the empty pages by using ' AB ' (41 H, 4 2 H) .

- !NIT holds the addr ess of the initialization procedu r e specific
to this cartridge. The default is 0 when no such procedure i s
necessary. Programs that need to interact with the BASI C
interpreter should return control to i t with a z-80 ' RET'
instruction (all registers except [SP] may be destroyed) . Note,
however, that other programs (s uch as games) do not need to do
thi s .

162

ADVANCED PROGRAMMING GUIDE

- STATEMENT holds an address of the expanded statement handler
when contained in the cartr idge ; the address i s 0 if no handler

is contained. If BASIC encounters a ' CALL ' statement, it calls
this address, with the statement name in the system area.
Note the follow ing points. < I n the notes below, the lHLl regis
ter pai r is called a ' text pointe r • .)

1) The cartridge must be placed at 4000H to 7FFFH.

2) The syntax for the expanded statement is as follows.

CALL <statement_name> l (<arg> [,< arg>] • •) 1

The keyword "CALL- can be replaced by an underscore (_) •

3) The statement name i s stored in the system area,
terminated by a 0 . Since the buffer for statement name
is of a f ixed length (1 6 bytes) , the statement name
cannot be longer than 1 5 characters.

4) If the handler for the statement is not contained within
the cartridge, set the carry flag and return. Note that
the text pointer must be returned unchanged.

5) I f the handler for that statement is contained within
the cartridge, it should handle the specified function,
update the text pointer to the end of the statement
(Normally it would point to 0 , indicating the end of the

l ine , or to ' : • to indicate the end of the statement) ,
and return with carry flag reset <all registers except
l SP1 may be destroyed) . At the entry to the expanded
statement handler, the text pointer should point to the
f i rst non-blank character after the statement name.

- DEVICE holds the address of the expanded device handler if it i s
contained i n this cartridge. The default i s 0 i f no handler i s
contained. BAS IC calls this address with the device name in the
system area. Note the following points.

1) The cartridge must be placed at 4000H to 7FFFH .

2) The dev ice name is stored in the system area terminated
by 0 . Since the length of the statement name buffer is
f ixed (16 bytes) , the device name cannot be longer than
1 5 characte rs.

3) Each cartr idge (16K) can have up to 4 logical dev ices.

4) When BASIC encounters an unidentifiable device name, it
it calls the DEVICE entry with OFFH in [Ace] . If the
specified device handler is not contained within the
cartridge, the carry flag should be set upon return. If
the speci f ied device handler is contained inside, the
dev ice ID (0 to 3) should be returned in [Ace] , and the

163

ADVANCED PROGRAMMING GUIDE

carry should be reset. All registers may be destr�ed.

5) Real I/O operations take place when a DEVICE entry
is entered with one of the follow ing values in lAce] .

0 Open
2 Close
4 Random I/O
6 Sequential output
8 Sequential input

1 0 LOC function
1 2 LOF function
14 EOF function
16 FPOS function
1 8 Back up a character

Device ID i s passed in the system variable ' DEVICE ' .

- TEXT holds the beginning address of the Ctokenized) BASIC text
contained in the cartridge. The default is 0 when no such text
i s inside. BASIC regards this as the beginning address of BASIC
text, sets pointer there, and begins execution of the program.
Note the follow ing points.

Note :

1) When there is more
leftmost one (in the
executed.

than one such
figure above>

slot, only
is enabled

the
and

2) The cartr idge must be placed at 8000H to O BFFFH, thus
the maximum length of BASIC text cannot exceed 16K
bytes.

3) Even if there i s a RAM block at 8000H to O BFFFH , it can-
not be used.

4) The address pointed to by the TEXT entry must contain
a z ero.

5) The line numbers (for statements which reference l ine
numbers, such as GOTO and GOSUB> should be translated t o
pointers in advance because they are not converted to
pointers during execution. Note that while they CAN be
l ine numbe r s , the execution would be slower.

INIT, STATEMENT, DEVICE and TEXT are placed with the low
order byte first.

164

ADVANCED PROGRAMMING GUIDE

o How slot information is kept i n the system area

EXPTBL - Indicates which slot is expanded.

EXPTBL: DS
DS
DS
DS

1
1
1
1

; for
; for
; f or
; for

slot
slot
slot
slot

1 0
tl
12
3

Each entry in
not expanded.

the EXPTBL holds SOH if expanded, 0 if

SLTTBL - Indicates the
slot register.
holds SOH.

value curr ently output to the expansion
Valid only when corresponding EXPTBL

SLTTBL: DS
DS
DS
DS

1
1
1
1

; for slot t o
; for slot t l
; for slot 1 2
; for slot 13

SLTATR - Holds attributes for each page.

SLTATR: DS 6 4

Each byte in the SLTATR table corresponds to each page.
Bits are assigned as follows.

xxxxxxxx
I l l I I I I I
I I I I I I I L- Unused
I I I I I I '--Unused
I I I I I L---unused
I l I I '----unused
I I I '----- unused
I I �- ----- statement e xpander inside
I �-------Device expander inside
�--------BAS IC text inside

SLTWRK - Holds working storage for each page.

SL'IWRK: DS 1 2 8

Each word i n the SLTWRK table can be excl usively used
by each page. The use of this work area depends entirely
on the page.

165

ADVANCED PROGRAMMING GUIDE

o usage of hooks

Hooks are one of the methods in which MSX-BAS IC can be expanded.
Some procedures (such as ' console input ' , ' console output ' >
have a z-ao ' CALL' instruction directed to the common RAM area.
The areas consist of a f ive-byte storage area pe r hook, and are
initialized with five z-80 ' RET' instructions upon cold start.
Expansion is done by redirecting this entry elsewhere.

Exampl e :

CALL HOOKxx] in ROM
•

HOOKxx: RET] in

HOOKxx : RST 6
RET DB <Slot-address>
RET RAM _,. DW <Memory- address>
RET RET
RET

RST 6 performs a n inter-slot call to a different slot .
Ref er to BIOENT. MAC for further details of the interslot
call facility.

To connect the hook to the desired routine, the routine
must determine its location (slot) . This is important
because the routine ' s slot location is unpr edictabl e.
This i s done by the following procedure.

RSLREG EQU
EXPTBL EQU
88000 EQU

CALL
RRC
RRC

IF 88000
RRC
RRC

END IF
ANI
MOV
MVI
LXI
DAD
ORA
MOV
INX
INX

138H
OFCClH
1

RSLREG

l l B
C, A
B , O
H , EXPTBL
B
M
C , A
H
H

166

� Se t this true if the
;program resides at
; 8000 • • OBFFFH
; Read primary slot #
;Move it to bit 0 , 1
;of [AccJ

; See if this slot is
; expanded or not
; Set MSB if so

; Point to SLTTBL entry

ADVANCED PROGRAMMING GUIDE

IF

ENDIF

< CAUTION >

INX
INX
MOV

B8000
RRC
RRC

ANI
ORA
RET

H
H
A , M

l l OOB
c

;Get what is
;output to
; slot register

;Move it to
; of [Ace]

curr ently
expansion

bit 2 , 3

; Fi nally
; address

form slot

A machine language program in a cartr idge
i n any slot (including secondary slots) .
the cartridge i s unpredictabl e .

must be able to run
The slot for running

167

ADVANCED PROG RAMMING GUIDE

o Usage of USR function

There are 1 0 USR
abbreviated a s USR.
def ined as follows.

functions, USRO through USR9 . USRO can be
The address for a USR function jump i s

DEFOSRO :&HEOOO (This can be DEFUSR=&HEOOO)
DEFUSR3 =&HE0 23

The USR functions can be invoked as follows.

A=USRO (12) (This can also be A=USR (l2))
PRINT USR (nABCDn) +" This is a test11

The USR function pa r ameters are passed to the machine language
programs in the following manne r .

Integer

When USR is called as an integer function, the address
OF663H contains 2 , and its value is located at OF7F8H
and OF7F9H, with the lower byte f irst.

String

When USR is called as a string function, the address
OF663H contains 3 , and its string descriptor is located
at OF7F8H and OF7F9H. String descriptors consist of
three bytes, the f irst byte is the l ength of string, the
second and third are the address of the string.

Single-precision

When USR is called as a single-precision function, the
address OF663H contains 4 , and its value is located at
OF7F6H to OF7F9H.

Double-precision

When USR is called as a double-precision function, the
address OF663H contains 8, and its value i s located at
OF7F6H to OF7FDH.

ADVANCED PROGRAMMING GUIDE

The value f r om a USR function can be returned to BAS IC in the
follow ing manner.

Integer

The data at the address OF663H should be set to 2 . The
value should be placed in OF7F8H and OF7F9H, with the
lower byte f i rs t .

String

The data at the address OF663H should be set to 3 . The
address of the string descriptor should be placed i n
OF7F8H and OF7F9H. String descriptors consist of three
bytes, the first byte i s set to the string l ength, the
second and thi r d bytes indicate the string address.

Single-precision

The data at the address OF663 H should be set to 4 . The
value should be placed i n OF7F6H through 0F7F9H.

Double-precision

The data at the address OF663H should be set to 8 . The
value should be placed i n OF7F6H through OF7FDH .

169

ADVANCED PROGRAMMING GUIDE

o How to all ocate work area for cartridges

If the program is stand-alone (i. e. , does not need to run with
other programs in other cartridge s) , all RAM area below the
f ixed work area for BIOS (i . e. , below OF380H) is f ree. However ,
if the program must run with the BAS IC interpreter and programs
in other cartridges, the RAM usage is restricted.

There are three ways to allocate RAM to be used exclusively
by each cartridge.

1) Put RAM on the cartridge. (Easiest and best)

2) If the work area is less than 3 bytes, use SLTWRK.

3) If the work area is greater than 2 bytes, make SLTWRK point
to the system variable BOTTOM (0FC48H) , then update i t by
the amount of memory required. BOTTOM i s set by the
initial ization code to point to the bottom of the RAM.

Exampl e :
Program is at

SIZE EQU
RSLREG EQU
EXPTBL EQU
BOTTOM EQU

.
I

CALL
RRC
RRC
ANI
MOV
MVI
LXI
DAD

ADD
ADD
ADD
ADD
MDV
MOV
ADD
SBB
ANI
INX
INX
INX
INX
ANA

ORA

4 0 0 0 8 to 7FFFH

???
1 3 8H
OFCClH
OFC48H

RSLREG

000000118
c , A
B , 0
H , EXPTBL
B
A.
A
A
A
C , A
A, M
A
A
0 00 01 1 0 0B
H
H
H
H
M

c

170

; Size of memory required

; Read pr imary slot t
;Move it to bit 0 ,1
; of [Ace]

;See if this slot i s
; e xpanded o r not

; Form mask pattern

; Point to SLTTB L entry

;Get what is
;output to
; slot register

cur rently
expansion

ADVANCED PROGRAMMING GUIDE

;
ORI OOOOOOOlB

; Now, we have the sequence number for this
; cartridge as follows.
1
; OOPPSSBB

I I l l I I
; I I I I �._- Higher 2 bits of memory address
; I I �..__ ___ Secondary slot t (0 • • 3)

�...__ _____ Primary slot t (0 • • 3)
.
,

;

ADD
MOV
MVI
LXI
DAD
LBCD
MOV
INX
MOV
LXI
DAD
MOV
CPI
JRNC
SHLD
RET

A
C , A
B , O
H , SL'IWRK
B
BOTTOM
M, C
H
M, B
H , SIZE
B
A, H
OFOH
NOROOM
BOTTOM

;Double since word table

;Point to entry in
; SL'IWRK table
;Get current RAM bottom
;Register this

;Beyond OEFFFH?
;Too much RAM required?
;Yes, cannot allocate

BOTTOM became greater than O EFFFH , there i s
; no RAM l ef t to be allocated •
.
,

NOROOM :

171

; Print messa�es
; something l 1ke

or
that

ADVANCED PROGRAMMING GUIDE

2 . 2 . 4 Cassette I/0 Mechani sm

o Physical Format

A. Pulse Width

�----- 833
�-- 417 ------J
� 2 0 8 �
<104>

(Micr oseconds)

�----- 2983 ------7

[1200 baud 1

0 - 1200 Hz

1 - 2 40 0 Hz

2400 baud J

0 - 2 40 0 Hz

1 - 4800 Hz

�-- 14 91 --�
�7 46 �
<373>

I

(T states)

I

Note that a pulse begins in the low state when it i s being
written.

172

ADVANCED PROGRAMMING GUIDE

B . Hea.der

There are two kinds of heade r s ; long headers and short heade rs.
The long header is used for the file header, and the short
header is used for the body of the file.

1200 baud 1

Long header
Short header

2400 baud 1

Long header
Short header

1 6 0 0 0 X 2400 Hz
4000 X 2400 Hz

3 2000 X 4800 Hz
8000 X 4800 Hz

The baud rate is determined when reading the heade r.

c. Data

Data i s composed of one ' 0 ' (Start bi t) followed by an 8-bit
data str eam, and i s followed by two ' l ' s (Stop bits) . The
sequence of the data i s from the least significant bit (LSB) to
the most significant bit (MSB) . When reading f r om cassette,
the software measures the number of transitions during 3/4
of the baud rate. The result should be a 1 when reading a space,
or 2 or 3 when reading a mark.

173

ADVANCED PROGRAMMING GUIDE

o Logical Format

There three file types (also called file attributes) supported
i n MSX-BAS IC. These file type s, or attributes, are: BASIC text
files, ASCII text files, and machine language files.

A. BASIC Text File Format

File header

Long header
10 X OD3H
F i 1 e name < 6 by te s)

File body l

Short header
Tokenized BASIC text
7 X OOH

B. ASCII Text File Format

Long header
10 x OEAH
File name (6 by tes)

File body l

Short header
256 x data
Short header
256 x data
Short header
256 x data

Short header
256 x data (includes Control - Z)

174

ADVANCED PROGRAMMING GUIDE

C. Machine Language Fil e Format

[File header 1

Long header
1 0 x ODOH
File name <6 bytes long)

File body 1

Short header
Load start address (1 word)
Load end address (1 word)
Execution start address <1 word)
Machine language program

175

ADVANCED PROGRAMMING GUIDE

o Related B IOS Entries

Name:
Function:
Entry :
Returns :
Modifies:

Name:
Function:
Entry :
Returns:
Modifies:

Name:
Function:
Entry :
Returns:
Modifies:

Name :
Function:

Entry :

Returns:
Modifies:

Name:
Function:
Entry :
Returns:
Modifies:

Name:
Function:
Entry :
Returns:
Modifies :

[NOTES]

TAPION (OOElH}
Sets the cassette motor on and reads tape header
None
Carry flag i s set if aborted
All

TAPIN (00E4H)
Reads data from tape
None
Data in [ACCl , carry flag i s set i f aborted
All

TAPIOF (0 0 E7 H)
Stops reading f rom tape
None
None
None

TAPOON (OOEAH)
Sets the motor on and writes the tape header
block onto cassette
[ACC] will contain a non-zero value if a long

header is desired, zero if a short header is
desired
Carry flag is set if aborted
All

TAPOUT (OOEDH)
Writes data to tape
Data to be output in lACC]
Carry flag i s set if aborted
All

TAPOOF (OOFOH)
Stops writing to tape
None
None
None

All of the above routines must be entered with the interrupts
disabled.

Because the above pulses are software-generated, all of the
above routines must be called using the same time intervals as
when using BASIC.

176

ADVANCED PROGRAMMING GUIDE

2 . 2 . 5 MSX Printer Specifi cations

This document summarizes the requi rements for the dot matrix
printers connected to MSX computers.

A. Character Set

The MSX printer should have the same character set that the MSX
computer has. This is a character set with codes of 00 to FE.
The graphics characters (codes between DOH and lFH) are
represented by two-byte code sequence, preceded by OlH, then
followed by the code itsel f , added to an offset of 40H.

Exampl e :

To print a character with the code 02H, first send OlB, the
graphic heade r , then send 42 H, the sum of the code (02H) and
the offset (40 H) •

This rule i s the same as when sending characters to the screen.

B. Control Codes

The MSX printer supports codes in the format of the NEC PC-8023
printe r . The minimum requirements for the MSX printer are a s
follow s :

OA - Line feed
OC - Form feed (Recommended page length: 66 lines/page)
OD - Car r i age return

ESC+ " A " - 1 / 6 " l ine spacing for 8-pin printers, or place
space between l ines.

ESC+ " B " - 1 / 8 ' line spacing for 8-pin printer s , or place
space between l ines.

a

no

ESC+ " Snnnn" - Dot image print. <nnnn> represents the number
of to follow, in ASCII decimal character s .

I f the printer has a l ine buff er , the following control
character initiates printing of the contents of the line buffer.

OD - Carriage return I Print contents of buffer

177

AO\TANCED PROGRAMMING GUIDE

c. Non-MSX Printers

MSX-BASIC has a switch in the 5 th parameter of the SCREEN
statement. When this is set to 1 , MSX-BAS IC assumes that the
printer connected to the system has no such capabilities as
described above. In this mode, MSX-BAS IC converts those
characters with codes between 0 0 to lFH to blanks. The default
value of this switch is 0 0 , meaning that the MSX printer is
connected.

D. Control Functions for the PC-8023 Printer

Control
Code (Hex) Function

8
9

1 0
1 1
1 2
13
1 4
1 5
27
2 9
3 0
3 1

8
9
A
B
c
D
E
F

lB
lD
l E
lF

Back space
Hor i2 on tal TAB
Line feed
Vertical TAB
Form feed
Carr iage return
Double width
Normal width
Escape character
Vertical form control
Vertical form control
+ch r $ (16+n) l < =n<=lS
+ch r S <n > 2<=n<=6

178

setting start
setting end

N lines feed
Vertical tab channel select

ADVANCED PROGRAMMING GUIDE

ESC + Control
Code

&
$

A
B
T+"nn•

N
p

E
Q

L+"nnn•

S+"nnnn"

X
y

r
f

[
1

< + " nnn " , , , .
) +" nnn" , , , .
2

Function

Dot spacing

Enhanced print
Cancel enhanced mode

Alphanumerics/Hiragana
Alphanumerics/Katakana

1/6" feed
1/ 8" feed
n/144" feed

Normal spacing (1 0 CPI)
Proportional spacing (20 CPI)
Double density dot spacing i n graphic print
Elite spacing (12 CPI)
Condensed spacing, 136 characters/line

Set l ef t margin

Bit image print Cnnnn :n umber of dots follow >

Start under line
End under l ine

Reverse feed
Forward feed

Incremental printing . BS erases last character sent
Logical seeking bidirectional print. A ch r$ (24)
cancel s the l ine sent.

Set horiz ontal tab
Clear horiz ontal tab (specified position only)
Clear all the horizontal tab position

179

180

PART C

EXPANDED MSX SYS TEM SOF TWARE

MSX-DOS USER ' S GUIDE

3 . MSX-DOS

MSX-DOS is a disk operating system for MSX computers. The system
with its compatibility to other versions of MS-DOS will surely
provide you a comfortable env ironment around. All Microsoft
languages (BASIC Interpreter, BAS IC Compiler, FORTRAN, COBOL,
Pascal) will be available under MSX-DOS. Users of MSX-DOS are
assured that their operating system will be the f i rst that
Microsoft will support when any new products or maj or releases are
announced.

3 . 1 MSX-DOS User ' s Guide

3 . 1 . 1 System Requir ements

The MSX-DOS operating system requires a MSX microcomputer system
with 6 4k bytes of memory (RAM) and at least one disk drive.

The MSX-DOS disk contains the follow ing files:

File Name Function of File

COMMAND. COM
MSXDOS . SYS

MSX-DOS command processor
MSX-DOS operating system

3 . 1 . 2 Getting Star ted

Once MSX-DOS has been loaded, the system searches the MSX-DOS
disk for the COMMAND. COM f il e and loads i t into memory. The
COMMAND . COM file i s a program that processes the commands you
enter and then runs the appropriate programs. It is also called
the command processor.

When the command processor is loaded, you will see the following
displ ay on your screen (the unde rscore represents the cursor) :

MSX-DOS Version 1 . 0 0
Copyright 1 9 84 by Microsoft

Command version 1 . 0 0

Current date is Sun 1-01-1 9 84
Enter new da te :

NOTE

The date format (mm-dd-yy> may
be changed depending on
versions. For example , it is
"yy-mm-dd" in Japanese version.

182

MSX-DOS USER1 S GUIDE

Any date i s acceptabl e in answer to the new date prompt as long as
it follows the above format. Separators between the numbers can
be hyphens (-) or slashes (/) .

After you have answered the new time prompt , the MSX-DOS

A>_

will be displayed.
It tells you that MSX-DOS is ready to accept commands . If you
have inserted the MSX-DOS disk into a drive other than A, the
command processor prompt will reflect that drive (for exampl e, B>) .
However, usually you will load MSX-DOS in drive A.

The A in the previous prompt represents the default disk drive.
This means that MSX-DOS will search only the disk in drive A for
any fil enames you may enter and will write files to that disk
unless you specify a different drive. You can ask MSX-DOS to
search the disk in drive B by changing the drive designation or by
specifying B : in a command. To change the disk drive designation,
enter the new drive letter followed � a colon. For exampl e :

A> (MSX-DOS prompt)
A>B: <you have typed B : in response to

the prompt)
B> (system responds with B> and drive B

is now the default drive)

The system prompt B> w ill appear and MSX-DOS will search only the
disk in drive B until you specify a different default drive.

If you have only one disk drive attached to your computer, turn to
3 . 1 . 1 4 • Instr uctions for U se r s with Single-Drive Systems ' , for
important information.

A f il ename can be from 1 to 8 characters long. The fil ename
extension can be three or fewer characters. You can type any
fil ename in small or capital letters and MSX-DOS will translate
these letters into uppercase cha racters.

In addition to the fil ename and the fil ename extension, the
name of your file may incl ude a drive designation. A drive
designation tells MSX-DOS to look on the disk in the designated
drive to find the filename ty ped.

183

MSX-DOS USER' S GUIDE

The following characters are allowed for file names and thei r
extensions.

A- Z 0-9

%

$ & t

@

¥ { } ' I (A backslash instead of Yen sign
in internati onal versions .)

The term file specification (or f ilespec> will be used in this
book to indicate the follow ing f il ename format:

[<drive designation : > 1 <f ilename> [< . fil ename extension>]

3 . 1 .3 Wild Cards

Two special characters (called wild cards) can be used in
f il enames and extensions: the asterisk (*) and the question mark
(?) . These special characters give you greater flexibil ity when
using f il enames in MSX-DOS commands .

o The ? Wild Card

A question mark (?) in a f ilename or fil ename extension indicates
that any character can occupy that position. For exampl e, the
MSX-DOS command

DIR TEST?RUN. COM

w ill li st all di rectory entr ies on the def ault drive that have 8
character s , begin with TEST, have any next character, end with the
letters RUN, and have a fil ename extension of . COM.

o The * Wild Card

An asterisk < * > in a f il ename or filename extension indicates that
any character can occupy that position or any of the remaining
positions in the filename or extension.
For exampl e :

DIR TEST*. COM

will list all directory entries on the
fil enames that begin with the characters
extension of . COM.

default drive with
TEST and have an

The wild card designation * · * refers to all files on the disk.
Note that this can be very powerful and destructive when used in
MSX-DOS commands . For exampl e, the command DEL * · * deletes all
files on the default drive, regardless of filename or extension.

184

MSX-DOS USER ' S GUIDE

3 . 1 . 4 Ill egal File Names

MSX-DOS treats some dev ice names specially, and certain 3-
letter names are reserved for the names of these devices. These
3-letter names cannot be used as fil enames o r extensions. You
must not name your f iles any of the following:

AUX Used when referring to input from or output to an
auxil iary dev ice < such as a printer o r disk drive) .

CON Used when referr ing to keyboard input or to output to the
terminal console (screen) .

LST or
PRN Used when referring to the printer device.

NUL Used when you do not want to create a particular file,
but the command requi r es an input or output filename.

Even i f you add device designations or filename extensions to
these fil enames, they remain associated with the devices listed
above . For exampl e , A : CON. XXX stil l refers to the console and is
not the name of a disk f il e .

185

MSX-DOS USER' S GUIDE

3 . 1 . 5 Directories

The dir ectory also contains information on the size of the files,
their locations on the disk, and the dates that they were created
and updated.

3 . 1 . 6 Types of MSX-DOS Commands

There are two types of MSX-DOS commands:

Internal commands

External commands

Internal commands are the simpl est , most commonly used commands.
You cannot see these commands when you do a di rectory listing on
your MSX-DOS disk ; they are part of the command processor. When
you type these commands, they execute immediately. The following
internal commands are described in 3 . 2 .

BAS IC
COPY
DATE
DEL (ERASE)

DIR
FORMAT
MODE
PAUSE

REM
REN (RENAME)
TIME
TYPE
VERIFY

External commands reside on disks as program files. They must be
read f rom disk before they can execute. If the disk containing
the command is not in the drive, MSX-DOS will not be able to f ind
and execute the command.

Any fil ename with a fil ename extension of . COM or . BAT is
considered an external command. For exampl e, programs such as
FILCON . COM and COMP. COM are external commands. Because all
external commands reside on disk, you can create commands and add
them to the system. Programs that you create with most languages
(including assembly language) will be . COM (executabl e) files.

When you enter an external command, do not include its f ilename
extension.

186

MSX-DOS USER ' S GUIDE

3 . 1 .7 Command Options

Options can be included in your MSX-DOS commands to specify
additi onal information to the system. If you do not include some
options, MSX-DOS provides a default value.

The following is the format of all MSX-DOS commands :

Command [options • • •]

wher e :

switches

arguments

fil espec

d :

fil ename

. ext

Switches are options
commands . They are
(for exampl e, /P) .

that control
preceded by a

MSX-DOS
slash

Provide more information to MSX-DOS commands .
You usually choose between arguments: for
exampl e, ON or OFF.

Refers to an optional drive designation, a
filename, and an optional three letter
f il ename extension in the following format:

[< d : > l <fil ename> £ < . ext >1

Refers to a disk drive designation.

Refers to any val id name for a disk file,
including an opt ional fil ename extension.
The filename opt ion does not refer to a
device or to a disk drive designation.

Refers to an optional filename extension
consisting of a period and 1-3 characters.
When used, fil ename extensions immediately
follow filenames.

187

MSX-DOS USER' S GUIDE

3 . 1 . 8 Information Common to All MSX-DOS Commands

The follow ing information appl ies to all MSX-DOS commands:

o Commands are usually followed by one or more
options.

o Commands and options may be entered in uppercase or
lowercase, or a combination of keys.

o Commands and options must be separated by
delimiters. Because they are easiest, you will
usually use the space and comma as delimiters. For
exampl e :

DEL MYFILE. OLD NEWFILE. TXT
RENAME , TH ISFILE THATFILE

You can also
sign (=) , or
commands.

use the semicolon (;) , the equal
the tab key as delimiters in MSX-DOS

o Do not separate a f il e specification with
delimiters, since the colon and the period al ready
serve as delimiters.

o When instructions say •strike a key when ready • ,
you can press any key except <CONTROL-C > .

0 You must
referring
extension.

incl ude the
to a file

filename extension when
that al ready has a fil ename

o You can abort commands when they are running by
pressing <CONTROL-C>.

o Commands take effect only after you have pressed
the <RETURN> key.

o Wild cards (global fil ename characters> and device
names (for exampl e, PRN or CON) are not allowed in
the names of any commands.

o When commands produce a large amount of output on
the screen, the di splay will automatically scroll
to the next screen. You can press <CONTROL-S> to
suspend the display. Press any key to resume the
display on the screen.

0 MSX-DOS editing
when entering
Editing and
description of

and function keys can be used
commands . Refer to 3 . 1 . 13 MSX-DOS

Function Key s, for a compl ete
these keys.

188

MSX-DOS USER' S GUIDE

o The prompt f rom the command processor is the
default drive designation plus a right angle
bracket (>) ; for exampl e, A> .

0 Disk drives will be referred to as source drives
and destination drives. A source drive is the
drive you will be tr ansf erring information f rom. A
destination drive i s the drive you will be
transferring information to.

3 . 1 . 9 Batch Processing

With MSX-DOS , you can put the command sequence into a special
f ile called a batch file, and execute the entire sequence simply
by typing the name of the batch file. "Batches" of your commands
in such files are processed as if they were typed at a term inal .
Each batch file must be named with the . BAT extension, and is
executed by typing the filename without its extension.

Two MSX-DOS commands are available for use expressly in batch
files: REM and PAUSE. REM permits you to include remarks and
comments in your batch files w i thout these remarks being executed
as commands. PAUSE prompts you with an optional message and
permits you to either continue or abort the batch process at a
given point.

MSX-DOS USER' S GUIDE

The following l ist contains information that you should read
before you execute a batch process with MSX-DOS :

o Do not enter the fil ename BATCH < unless the name of
the file you want to execute i s BATCH . BAT) .

o Only the fil ename should be -entered to execute the
batch file. Do not enter the fil ename extension.

o The commands in the file named <filenarne>. BAT are
executed.

o If you press <CONTROL-C) while in batch mode , this
prompt appear s :

0

Terminate batch j ob (Y/N) ?

If you press Y, the remainder of the commands in
the batch f ile are ignored and the system prompt
appear s.

If you press N, only the current command ends and
batch processing continues with the next command in
the file.

If you remove
being executed,
it again before

the disk containing a batch file
MSX-DOS prompts you to insert

the next command can be read.

o The last command in a batch file may be the name of
another batch file. This allows you to cal l one
batch file from another when the first i s finished.

3 . 1 . 1 0 The AUTOEXEC. BAT File

When you start MSX-DOS, the command processor searches the MSX-DOS
disk for a f il e named AUTOEXEC. BAT. The AUTOEXEC. BAT file i s a
batch file that i s automatically executed each time you start the
system.

If MSX-DOS
executed by
bypassed.

finds the AUTOEXEC. BAT file,
the command processor and

the file is immediately
the date prompts a r e

If MSX-DOS does not find a n AUTOEXEC. BAT f ile when you f i r st load
the MSX-DOS disk, then the date and time prompts will be issued.

190

MSX-DOS USER' S GUIDE

3 . 1 . 1 1 How To Create a Batch File

If, for exampl e, you wanted to automatically load BASIC
program called MENU each time you star ted MSX-DOS,
create an AUTOEXEC. BAT file as follows:

1 . Type :

COPY CON : AUTOEXEC. BAT

and run a
you could

This statement tells MSX-DOS to copy the
information f r om the console (keyboard> into the
AUTOEXEC. BAT file. Note that the AUTOEXEC. BAT
file must be created in the root di rectory of
your MSX-DOS disk.

2 . Now type:

BASIC MENU

This statement goes into the AUTOEXEC. BAT file.
It tel l s MSX-DOS to load BASIC and run the MENU
program whenever MSX-DOS is started.

3 . Press the <CONTROL- Z> key ; then press the <RETURN>
key to put the command BASIC MENU in the
AUTOEXEC. BAT file.

4 . The MENU program will now run automatically
whenever you start MSX-DOS.

To run your own BASIC program, enter the name of your program
in place of MENU in the second l ine of the exampl e. You can enter
any MSX-DOS command or series of commands in the AUTOEXEC. BAT file.

NOTE

Remembe r that if you use
an AUTOEXEC. BAT file, MSX-DOS
w ill not prompt you for a
current date unless you
include the DATE command
i n the AUTOEXEC. BAT f il e .
It is str ongly recommended
that you incl ude this command
in your AUTOEXEC. BAT file,
since MSX-DOS uses this
information to keep your
directory current.

191

MSX-DOS USER' S GUIDE

3 . 1 .1 2 Replaceable Parameters in . BAT Files.

There may be times when you want to create an appl ication program
and run it with different sets of data. These data may be stored
in various MSX-DOS files.

When used in MSX-DOS commands, a parameter is an option that you
define. With MSX-DOS, you can create a batch (. BAT) file with
dummy (r eplaceabl e) parameter s . These paramete rs, named % 0-% 9 ,
can be replaced by values suppl ied when the batch file executes.

For exampl e, when you type the command l ine COPY CON MYFILE. BAT,
the next l ines you type are copied f rom the console to a f ile
named MYFILE. BAT on the default drive:

A>COPY CON MYFILE. BAT
COPY % l . MAC % 2 . MAC
TYPE %2 . PRN
TYPE % 0 . BAT

Now, press <CONTROL-Z> and then press <RETURN> .
with this message :

MSX-DOS responds

1 Fil e (s) copied
A>_

The f il e MYFILE. BAT, which consists of three commands, now resides
on the disk in the default drive.

The dummy parameter s %1 and %2 are replaced sequentially by the
paramete rs you supply when you execute the file. The dummy
parameter % 0 is always replaced by the drive designator, if
specified, and the fil ename of the batch f i l e (for exampl e,
MYFILE) .

NOTES :

1 . Up to 1 0 dummy parameters (% 0-% 9) can be specified.

2 . If you use the percent sign as part of a fil ename
within a batch file, you must type i t twice. For
exampl e, to specify the file ABC% . COM, you must
type it as ABC%% . COM in the batch file.

192

MSX-DOS USER 1 S GUIDE

To execute the batch f il e MYFILE. BAT and to specify the parameters
that will replace the dummy pa rameters, you must enter the batch
fil ename (without its extension) followed by the parameters you
want MSX-DOS to substitute for % 1 , % 2 , etc.

Remember that the file MYFILE. BAT consists of 3 line s :

COPY % l . MAC % 2 . MAC
TYPE % 2 . PRN
TYPE % 0 . BAT

To execute the MYFILE batch process, type :

MYFILE A : PROGl B : PROG2

MYFILE i s substituted for % 0 , A: PROGl for % 1 , and B : PROG2 for % 2 .

The result i s the same as if you had typed each of the commands
in MYFILE with their parameters, as follows:

COPY A : PROGl . MAC B : PROG2 . MAC
TYPE B : PROG2 . PRN
TYPE MYFILE. BAT

The follow ing table ill ustrates how MSX-DOS replaces each of the
above parameter s :

BATCH
FILENAME

MY FILE

PARAMETER! (% 0) PARAMETER2 (% 1) PARAMETER3 (% 2)
(MYFILE) { PROGl) (PROG2)

MYFILE. BAT PROGl . MAC PROG2 . MAC
PROG2 . PRN

Rem�ber that the dummy parameter % 0 is always replaced by the
drive designator (if specified) and the fil ename of the batch file.

193

MSX-DOS USER' S GUIDE

3 . 1 . 1 3 MSX-DOS Editing and Function Keys

Special MSX-DOS Editing Keys

Control Character Functions

3 . 1 . 1 3 . 1 Special MSX-DOS Editing Keys

The special editing keys deserve particular emphasis because they
depart f r om the way in which most operating systems handl e command
input. You do not have to type the same sequences of keys
repeatedly, because the last command l ine i s automatically placed
in a special storage area called the templ ate.

By using the templ ate and the special editing keys, you can take
advantage of the fol lowing MSX-DOS featur es:

0 A command l ine can be instantly repeated
pressing two keys.

o If you make a mistake in the command l ine, you can
edit i t and retry without having to retype the
entire command l ine .

o A command l ine that i s similar to a preceding
command l ine can be edited and executed with a
minimum of typing by pressing special editing keys.

194

MSX-DOS USER ' S GUIDE

When you type a line to the system call OAH (buffered l ine input>
and press the RETURN key, the l ine i s returned to the caller of
the system cal l . This l ine is copied to the new templ ate. You
can now recall the last line or modify it with MSX-DOS special
editing keys.

The rel ationship between the command l ine and the template i s
shown in the next figure.

User Input

l
Command L ine Template

l
COMMAND. COM

Command Line and Templ ate

195

MSX-DOS USER' S GUIDE

r---------�------------�-------------------------- - - - - - - -,

I NAME I KEY I FUNCTION I
�--------+-------------+----------------------------------i

I COPY! I RIGHT ARROW I Copies one character from the I
I I "'¥ (*) I template to the new line. I
�--------+-------------+----------------------------------�

I COPYUP I S ELECT I Copies all characters f r om I
I I "'x I the template to the new line, I
I I I up to the character specified. I
�---------+-------------+----------------------------------i
I COPYALL I DOWN ARROW I Copies all remaining characters I
I I "'_ I i n the template to the new I
I I I 1 ine. I
r---------+-------------+----------------------------------�

I SKIP! I DEL I Skips over {does not copy} I
I I I a character in the templ ate. I
r---------+-------------+----------------------------------�

I SKIPUP I CLS I Skips over (does not copy> I
I I "L I the characters in the template, I
I I I up to the character specif ied. I
�---------+-------------+----------------------------------�

I VOID I UP ARROW I Voids the curr ent input. Leaves I
I I ESCAPE I the template unchanged. I
I I I I
I I "u I I
I I " l I I
�--------- +-------------+----------------------------------�

I BS I LEFT ARROW I Deletes the last character I
I I B S I typed. I
I I "H I I
I I "'] I I
�---------+-------------+----------------------------------t

I INSERT I insert I Enters/exits insert mode . I
I I "R I I
r---------+-------------+----------------------------------�

I NEWLINE I home I Makes the current l ine the I
I I "K I new templ ate. I
�--------- ._ - - - - - - - - - - - - � - - - - - - ---------------------------�

* Japanese. "' \ i n all other versions.

196

MSX-DOS USER ' S GUIDE

Exampl e :

I f you type the following command

DIR PROG . COM

MSX-DOS
screen.
repeat

displays information about the file PROG . COM on your
The command line is also saved in the template. To

the command, just press two keys: <COPYALL> and <RETURN>.

The repeated command is displayed on the screen as you type, as
shown bel ow :

<COPYALL >DIR PROG. OOM<RETURN>

Notice that pressing the <COPYALL> key causes the contents of the
template to be copied to the command line; pressing <RETURN>
causes the comm and l ine to be sent to the command processor for
execution.

If you want to display information about a file named PROG . ASM,
you can use the contents of the template and type :

<COPYUP>C

Typing <COPYUP>C copies all characters
command line , up to but not including

f rom the template to the
" C " . MSX-DOS displ ay s :

DIR PROG .

Note that the underl ine i s your curso r . Now type :

. ASM

The result i s :

DIR PROG. ASM.._

The command l ine "DIR PROG . ASM" is now in the template
to be sent to the command processor for execution. To
press <RETURN>.

and r eady
do th is,

Now assume that you want to execute the following command:

TYPE PROG . ASM

To do this, type :

TYPE<INSERT> <COPYALL><RETURN>

Notice that when you are typing, the characters are entered
directly into the command l ine and overwrite corresponding
characters in the templ ate. This automatic r eplacement feature
is turned off when you press the insert key. Th us , the characters
"TYPE11 replace the characters "DIR " in the templ ate. To insert

197

MSX-DOS USER' S GUIDE

a space between "TYPE" and "PROG . ASM" , you press <INSERT> and then
the space bar . Finally, to copy the rest of the template to the
command l ine, you press <COPYALL> and then <RETURN> . The command
nTYPE PROG . ASM" will be processed by MSX-DOS, and the template
becomes "TYPE PROG . ASM" .

If you had misspel l ed "TYPE" as "BYTE " , a command error would have
occurred. S till, instead of throwing away the whole command, you
could save the misspelled l ine before you press <RETURN> by
creating a new templ ate with the <NEWLINE> key :

BYTE PROG. ASM<N.EWLINE>

You could then edit this erroneous command by ty ping:

T<COPYl>P<COPYALL>

The <COPY!> key copies a single character from the templ ate to the
command l ine. The resulting command l ine is then the command that
you want:

TYPE PROG. ASM

As an alternative, you can use the same templ ate containing BYTE
PROG. ASM and then use the <SKI�l> and <INSERT> keys to achieve the
same resul t :

<SKIPl><SKIPl> <COPYl ><INSERT>YP<COPYALL>

To illustrate how the command l ine is affected as you type,
examine the keys typed on the l eft� their effect on the command
l ine i s shown on the right:

<SKIPl>
<SKIPl>
<COPY!>
<INSERT>YP
<COPYALL>

T
TYP
TYPE PROG . ASM

Notice that <SKIPl> does not
the template by deleting
<SKIPUP> deletes characters
including a given char acte r .

Skips over 1 st template character
Skips over 2 nd template character
Copies 3rd template character
Inserts two characters
Copies rest of template

affect the command l ine .
the fi rst character.
in the template, up

I t affects
Similarly,

to but not

These special editing keys can add to your effectiveness at the
keyboard. The next section describes control character functions
that can also help when you are typing commands.

198

MSX-DOS USER ' S GUIDE

3 . 1 . 13 .2 Control Character Functions

A control character
command l ine . You
<CONTROL- S > . Other
below.

function is a function that affects the
have already learned about <CONTROL-C> and
control character functions are described

Remember that when you type a control character , such as
<CONTROL-C> , you must hold down the control key and then press
the "C" key.

Table of Control Character Functions

�-------------T------------------- -------------------------,

I Control I
I Character I Function I
�-------------+--i
I <CONTROL-N> I Cancels echoing of output to l ine printer. I
�------------+--�

I <CONTROL-C> I Aborts current command. I
�-------------+--i
I <CONTROL-H> I Removes last character from command l ine, I
I I and erases character f r om terminal screen. I
�------------+--i

I <CONTROL-J> I Inserts physical end-of- line , but does I
I I not empty command line. Use the <LINE I
I I FEED> key to extend the current logical I
I I l ine beyond the phy sical l imits of one I
I I terminal screen. I
�------------+--i
I <CONTROL-P> I Echoes terminal output to the l ine I
I I printer. I
�------------+--�

I <CONTROL-S> I Suspends display of output to terminal I
I I screen. Press any key to resume. I
L-------------._---�

199

MSX-DOS USER' S GUIDE

3 . 1 . 1 4 Instr uctions for U sers with Single-drive Systems

On a single-drive system, you enter the commands as you would on a
multi-drive system.

You should think of the single-drive S¥Stem
(drive A and drive B) • But instead of A
phy sical drives as on the multi-drive
represent di sks.

as having two drives
and B representing two
system, the A and B

If you specify drive B when the "drive A di sk" was last used, you
are prompted to insert the disk for drive B . For exampl e :

A> COPY COMMAND. COM B :
Insert diskette for drive B:
and strike a key when ready

1 Fi l e (s) copied
A>_

If you specify drive A when the "drive B disk" was last used, you
are prompted again to change di sks. This time, MSX-DOS prompts
you to insert the "drive A disk . "

The same procedure is used if a command i s executed from a batch
f ile. MSX-DOS waits for you to insert the appropriate disk and
to press any key before it continues. You will be pr ompted to do
this.

NOTE

The letter displayed in the
system pr ompt represents the
default drive where MSX-DOS
looks to find a file whose
name i s entered without a
drive specifier. The letter in
the system prompt does not
represent the last disk used.

For exampl e, assume that A is the default drive. If the last
operation performed was DIR B : , KSX-DOS believes the "drive B
di sk" i s still in the drive. However , the system pr ompt is still
A> , because A is still the default drive. If you type DIR,
MSX-DOS prompts you for the "drive A disk" because drive A i s
the default drive, and you did not specify another drive in the
DIR conunand.

200

MSX-DOS USER' S GUIDE

3 . 1 . 1 5 Disk E r rors

If a disk error occurs at any time during a command or program,
MSX-DOS retries the operation three times. If the operation
cannot be compl eted successfully, MSX-DOS returns an error message
in the following format:

<yyy> error <I/O action> drive x
Abort, Retry, Ignore? _

In this message , <yyy> may be one of the following :

Write protect
Not ready
Disk

The <I /O-action> may be either of the following:

reading
writing

The drive <x> indicates the drive in which the error has occurred.

MSX-DOS waits for you to enter one of the following r esponse s :

A Abort. Terminate the program requesting the disk
read or write.

I Ignore. Ignore the bad sector and pretend the
error did not occur.

R Retry. Repeat the operation. This response i s
t o be used when the operator has corrected the
error .

Usually, you will want to attempt recovery by entering responses
in this order :

R (to try again)
A (to terminate program and try a new disk)

One other error message might be rel ated to faulty disk read or
write :

Bad FAT

This message means that the copy in memory of one of the
allocation tables has pointers to nonexistent blocks. Possibly
the disk was incorr ectly formatted or not formatted before use.
If this er ror persists, the disk is currently unusable and must be
formatted prior to use .

201

MSX-DOS COMMAND GUIDE

3 . 2 MSX-DOS Command Guide

NOTE

Users of single-drive systems
should refer to 3 . 1 . 1 4 for
the additional procedures
r eq uired when executing many
of the following commands .

The following MSX-DOS commands are described here. Note that
synonyms for commands are enclosed in parentheses.

BAS IC Goto MSX-BAS IC

COPY Copies f il e (s) specified

DATE Displays and sets date

DEL Deletes file (s) specified (ERASE)

DIR Lists requested directory entries

FORMAT Formats a disk to receive MSX-DOS file

MODE Sets display screen mode

PAUSE Pauses for input in a batch file

REM Displays a comment in a batch file

REN Renames f irst file as second file (RENAME)

TIME Displays and sets time

TYPE Displays the contents of f ile specified

VERIFY Sets/Resets ver ify mode

202

MSX-DOS COMMAND G UIDE

BAS IC

SYNTAX:

PURPOSE:

COMMENTS :

BASIC £<fil espec>]

Boots MSX-BAS IC

This command boots the MSX Disk BAS IC from
MSX-DOS.

the

If a BASIC program f il e
<filespec> , the program is
and run after BAS IC starts.

is designated
automatically

by the
loaded

This command changes the slot to make the BASIC
ROM effective. So the memory map is different
between the MSX-DOS and MSX-Disk-BAS IC.

use "CALL SYSTEM" statement to return to the MSX-DOS
from the BASIC.

203

MSX-DOS COMMAND GUIDE

COPY

SYNTAX :

PURPOSE:

COMMENTS :

COPY <filespec> [<filespec>]

Copies one or more files to another disk. If you
prefer, you can give the copies different names.
This command can also copy files on the same disk.

If the second fil espec option is not given, the
copy will be on the def ault drive and w ill have
the same name as the or iginal file (f irst filespec
option) . If the first fil espec i s on the default
drive and the second fil espec is not specified,
the COPY will be aborted. (Copying files to
themselves is not allowed.) MSX-DOS will return
the error message :

File cannot be copied onto itself
0 files copied

The second option may take three forms :

1 . If the second option is a drive designation
(d :) only, the or iginal file is copied with
the or iginal fil ename to the designated drive.

2 . If the second option is a filename only , the
or iginal file i s copied to a file on the default
drive with the filename specif ied.

3 . If the second option i s a full fil espec, the
original file is copied to a file on the default
drive with the f il ename specified.

command also allows f ile concatenation The COPY
(joining)
accomplished
as options to

For exampl e,

while copying. Concatenation i s
by simply listing any number of files
COPY, separated by "+".

COPY A. XYZ + B. COM + B : C. TXT BIGFILE. CRP

This command concatenates f iles named A. XYZ , B. OOM,
and B : C. TXT and places them in the file on the
default drive called B IGFILE. CRP.

To combine several files using wild cards into
one file, you could type :

COPY *. LST COMBIN. PRN

204

MSX-DOS COMMAND GUIDE

This command would take all files with a fil ename
extension of . LST and combine them into a fil e
named COMBIN. PRN.

In the f ol l ow ing exampl e , for each file found
matching *. LST, that file i s combined with the
corresponding . REF file. The result i s a file
with the same fil ename but with the extension . PRN.
Thus , FILEl . LST will be combined with FILEl . REF
to form FILEl . PRN; then XYZ . LST with XYZ . REF to
form XYZ . PRN; and so on.

COPY *. LST + * . REF * . PRN

The following COPY command combines all files
matching *. LST, then all files matching *. REF,
into one file named COMB IN. PRN :

COPY * . LST + * . REF COMB IN. PRN

Do not
one of
as the
command

enter a concatenation COPY command where
the source fil enames has the same extension
destination. For exampl e , the follow ing
i s an error if ALL. LST al ready exists:

COPY *. LST ALL. LST

The error would not be detected,
ALL. LST is appended. At this point
al ready been destroyed.

however, until
it could have

COPY compares the fil ename of the input file with
the fil ename of the destination. If they are the
same, that one input file is skipped, and the error
message "Content of destination lost before copy"
is printed. Further concatenation proceeds
normally. This allows "summing" f iles, as in this
exampl e :

COPY ALL. LST + * . LST

This command appends all * . LST files, except ALL. LST
itself, to ALL. LST. This command will not produce
an error message and i s the correct way to append
f iles using the COPY command.

Because ASCII files are usually concatenated, this
command interprets a CTRL+Z (lAH) as a end of file
mark in a f ile. So there is a need of a "/B" switch
to use a physical end of file (length of file
displayed by the DIR command } , when bina ry files
shall be concatenated.

COPY/B A. COM+B. OOM

205

MSX-DOS COMMAND GUIDE

In this example, the B . OOM i s appended after the
A. COM, and the destination file name i s still A. COM.

Any files can be concatenated by using "/B" switch
for binary file and "/A" for ASCI I file. A switch
i s effective for the switched f il e and the after
until a other switch appears.

Whether a CTRL+Z is appended at the end of the
destination file or not i s decided by a switch
of the destination file. There is no CTRL+Z in
the source f ile which is read in effect of "/A " .
Only one CTRL+Z is written when a file i s wri tten
in effect of "/A". Therefore more CTRL+Z are
appended as follows.

COPY A. ASM/B B. ASM/A

In this exampl e, "/B" avoids removing CTRL+Z and
"/A" appends a CTRL+Z .

When there i s no concatenation, "/A" and "/B"
switchs are val id, and the default file type i s
binary. "/A" switch terminates the copy at the
fi rst CTRL+ Z .

206

MSX-DOS COMMAND GUIDE

DATE

SYNTAX:

PURPOSE :

COMMENTS :

DATE l <mm>-<dd>-<yy>]

Enter or change the date known to the system. Thi s
date will be recorded in the directory for any
files you create or al te r .

You can
a batch
for the
you may
f il e.)

change the date from your terminal or from
file. (MSX-DOS does not displ ay a pr ompt

date i f you use an AUTOEXEC. BAT f il e , so
want to include a DATE command i n that

If you type DATE, DATE will respond with the
message :

Curr ent date i s <day>-<mm>-<dd>-<yy>
Enter new date:_

Press <RETURN> if you do not want to change the
date shown.

You can a l so type a pa r ticular date after the DATE
command, as in:

DATE 3-9-81

In this case, you do not have to answer the "Enter
new date : " prompt.

The new date must be entered
letters are not permitted.
are:

<mm> = 1 -1 2
<dd> = 1-31

using numerals only1
The allowed options

<yy> = 0-7 9 , 80-99 or 1 9 80-2099

The date, month, and year entries may be separated
�y hyphens (-) , slashes {/) or periods { . } . MSX-DOS
1s programmed to change months and years correctly,
whether the month has 3 1 , 3 0 , 2 9 , or 2 8 days.
MSX-DOS handles l eap yea r s , too.

<yy> is a two-digit number f r om 80-99 (the 1 9 is
assumed) , or a two-digit number f r om 00 -7 9 (the
20 is assumed) , or a four-digit number f rom
1 9 80-2 099 < r epresenting year . >

If the options o r separators are not valid, DATE
di splays the message :

Invalid date
Enter new date:_

207

MSX-DOS COMMAND GUIDE

DATE then waits for you to enter a valid date.

NOTE

The date format (mm-dd-yy> may
be changed depending on
versions. For example, it i s
"yy-mm-ddn i n Japanese version.

208

MSX-DOS COMMAND GUIDE

DEL

SYNONYM :

SYNTAX:

PURPOSE:

COMMENTS :

DELETE
ERASE

DEL (filespec]

Deletes all files with the designated f ilespec.

If the filespec
appear s . I f a
as a response,
requested. You
command.

i s * . * , the prompt "Are you sure?"
"Y" or "y • or <RETURN> i s typed

then all files are deleted as
can also type ERASE for the DELETE

209

MSX-DOS COMMAND GUIDE

DIR

SYNTAX :

PURPOSE:

COM�N� :

DIR (filespec] [/Pl [/W]

Lists the files in a directory.

If you j ust type DIR, all directory entries on
the default drive are l isted. If only the drive
specification is given (DIR d :) , all entries on
the disk in the specified drive are l i sted. If
only a f il ename is entered with no extension (DIR
fil ename) , then all files with the designated
f il ename on the disk in the default drive are
l isted. If you designate a file specification
(for exampl e, DIR d:f ilename. ext) , all files with
the fil ename specified on the disk in the drive
specified are li sted. In all cases, files a r e
l isted with their size in bytes and with the time
and date of their last modification.

The wild card characters ? and * (question mark
and asterisk) may be used in the f il ename option.
Note that for your convenience the following DIR
commands are equivalent:

COMMAND

DIR
DIR FILENAME
DIR . EXT
DIR •

EQUIVALENT

DIR *· *
DIR FILENAME. *
DIR * . EXT
DIR *

-- - - - --- ------- ---------- - - - - - --

Two switches may be specified with DIR. The /P
switch selects Page Mode. With /P, display of
the directory pa uses after the screen i s filled.
To re sume display of output , press any key.

The /W switch selects Wide Display. With /W, only
fil enames are displayed, without other file
information. Files are displayed as much as
possible per line.

�0

MSX-DOS COMMAND GUIDE

roRMT

smT�:

PURPOSE:

COMMENTS :

FORMAT

Formats the disk in the specified drive to accept
MSX-DOS f iles.

This command initializes the directory and file
allocation tabl es. A new disk must be formatted
before use. If a used disk is formatted, all f iles
in the disk are destroyed.

MSX-DOS issues the following message:

Drive name? (A, B) _

Select a drive name carefully. After you enter
the drive name, the follow ing message i s displayed.

Strike a key when ready_

After you insert the new disk in the drive and
press any key on the keyboa rd.

When the formatting f inish
a following message.

Format compl ete

NOTE

'

The format procedure may be
different with this
descr iption. For exampl e , you
can choose disk format from
single side or double side
with some disk driver . See
your disk driver ' s manual.

MSX-DOS will issue

MSX-DOS COMMAND GUIDE

MODE

SYNTAX :

PURPOSE:

COMMENTS :

MODE <width>

Sets the width of the display.

<width> is the maximum number of characters per
l ine on display.

<width> must be between 1
or less, screen mode 1
0 is selected.

and 40. If
is selected

it is 3 2
, else mode

The default screen mode and width of international
MSX versions are as follows.

�---------�----------� - ---------- �

Default
I Version I screen
I I mode

Default
screen
width

�--------+-----------+------------�
I Japan I 1 I 2 9 I
�--------+-----------+------------�
I USA I I 3 9 I
�--------;
I UK 1
�---------f
l DIN I
.. ---------�
I French I
�--------�
I INT I

0

t--------------1
I I
I I
I I
I 37 I
I I
I I
I I

�---------�----------._-----------�

212

MSX-DOS COMMAND GUIDE

PAUSE

SYNTAX:

PURPOSE:

COMMENTS :

PAUSE [comment 1

Suspends execution of the batch file.

During the execution of a batch file, you may
to change disks or perform some other action.
suspends execution until you press any key,
<CONTROL-C> .

need
PAU SE

except

When the command processor encounter s PAU SE, it
prints:

Strike a key when ready •

If you press <CONTROL-C > , another prompt will be
displayed:

Terminate batch file (Y/N) ?

If you type R y n in response to this prompt,
execution of the r emainder of the batch command
file will be aborted and control will be returned
to the operating system command level . Therefore,
PAUSE can be used to break a batch file into pieces,
allowing you to end the batch command file at an
intermediate point.

The comment is optional and may be entered on the
same l ine as PAUSE. You may also want to pr ompt
the user of the batch file with some meaningful
message when the batch file pauses. For exampl e,
you may want to change disks in one of the drives.
An optional prompt message may be given in such
cases. The comment pr ompt will be displ ayed before
the "Strike a key " message.

213

MSX-DOS COMMAND GUIDE

REM

SYNTAX :

PURPOSE:

COMMENTS :

REM [comment]

Displays remarks which
the REM command in a
of that batch file.

are on the same l ine as
batch file during execution

The only separators allowed in the comment are
the space, tab, and comma.

214

MSX-DOS COMMAND GUIDE

REN

SYNONYM :

smT�:

PURPOSE:

COMMENTS:

RENAME

REN <filespec> <filename>

Changes the name of the first option (filespec)
to the second option (fil ename) .

The f i rst option {filespec) must be given a drive
designation if the disk resides in a drive other
than the default drive. Any drive designation
for the second option (fil ename> is ignored. The
f i l e will remain on the disk where i t cur rently
resides.

The wild card characters may be used
option. All files matching the fi rst
are renamed. If wild card characters
the second f ilename, corresponding
positions will not be changed.

in either
f il espec

appear in
character

For exampl e, the following command changes the
names of all files with the . LST extension to
similar names with the . PRN extension:

REN *. LST * . PRN

In the next example , REN renames the file ABODE
on drive B to ADOBE :

REN B : ABODE ?D?B?

The file remains on drive B .

An attempt to rename a filespec to a name al ready
present in the directory will result in the error
message "Rename error"

215

MSX-DOS COMMAND GUIDE

TIME

SYNTAX :

PURPOSE:

COMMENTS :

TIME [<hh> f : <mm> l : <ss>1 1 1

Displays and sets the time.

If the TIME command is entered without any arguments,
the following message is displayed:

Current time is < hh>: <mm> : <s s > . <cc>
Enter new time:_

Press the <RETURN> key if you do not want to change
the time shown. A new time may be given as an
option to the TIME command as in:

TIME 8 : 2 0

The new time must be entered using numerals only ;
l etters are not allowed. The allowed options are:

<hh> = 00-24
<mm> = 00-59
<ss> = 00-59

The hour and minute entries must be separated by
colons. You do not have to type the <ss> (seconds)
or <cc> < hundredths of seconds) options.

MSX-DOS uses the time entered as
the options and separators are
options or separators are not
displays the message:

I nval id time
Enter new time:_

the new
valid.
valid,

time if
If the
MSX-DOS

MSX-DOS then waits for you to type a val id time.

NOTE

I f your computer does not have
a clock, this command is
nonsense.

216

MSX-OOS COMMAND GUIDE

TYPE

SYNTAX :

PURPOSE:

COMMENTS :

TYPE <filespec>

Displays the contents of the f ile on the consol e
screen.

Use this command to examine a file without modifying
it. (Use DIR to find the name of a f il e . > The
only formatting performed by TYPE is that tabs
are expanded to space s consistent with tab stops
every eighth column. Note that a display of binary
files causes control characters (such as CONTROL- Z)
to be sent to your computer, including bells, form
feeds, and escape sequences.

217

MSX-DOS COMMAND GUIDE

VERIFY

SYNTAX:

PURPOSE:

COMMENTS :

VERIFY { ON I OFF }

Set/reset verify < r ead after write) mode.

The VERIFY ON command sets verify mode . Whenever
some data are wr itten into di sk, that data are read
from disk and verified. If the verified data i s not
correct, "DISK I/0 error" occurs.

The VERIFY OFF command resets verify mode.

Default mode i s VERIFY OFF.

Writing i s more rel iable but needs longer time in
verify mode.

218

MSX DISK BASIC REFERENCE GUIDE

3 . 3 MSX Disk BASIC Reference Guide

Microsof t <TM) BAS IC i s the most extensive implementation of BASIC
available for microprocessors. Microsoft BASIC meets the ANSI
qualifications for BASIC, as set forth in document BSRX3 . 6 0-1 97 8 .
Each rel ease of Microsoft BASIC is compatible with previous
versions.

MSX(TM) disk BASIC is a release of Microsoft BASIC for the MSX
computer and its flexible disk system.

3 . 3 .1 Commands and Statements

BLOAD
B SAVE
CLOSE
COPY
DSKO
FIELD
FILES and LFILES
FORMAT
GET
INPUT#
KILL
L INE INPUTt
LOAD
L SET and RSET
MAXFILES
MERGE
NAME
OPEN
PRINT# and PRINT# USING
PUT
RUN
SAVE
SYSTEM
VERIFY

219

MSX DISK BASIC REFERENCE GUIDE

BLOAD

SYNTAX:

PURPOSE:

COMMENTS :

EXAMPLE:

BLOAD "<filespec>" { [, R1 I [, SJ } [, of fset]

Loads a machine language program or an ar ray from
disk or cassette tape into memory .

The file name can be omitted only for the file in the
cassette tape, not for the disk.

If no <offset> is specified, the program is loaded
f r om the address designated by the BSAVE command. If
an <offset> i s specified, the program is loaded
f r om the address added <offset> to the saved address.
Programs to be loaded with the offset must be
rel ocatabl e.

The R option automatically runs the program after it
has been loaded.

The s option loads the screen image saved by the
"B SAV E , s" statement to video RAM.

If no drive name is specified, the program in the
current drive is loaded.

See also "B SAVE, 11 •

BLOAD "MAX2"

Loads file "MAX2" into memory .

220

MSX DISK BASIC REFERENCE G UIDE

BSAVE

PURPOSE:

COMMENTS :

EXAMPLE :

BSAVE "<fil e spec>" , <start address> , < end address>
{ [,<execute address>] I [, 51 }

saves the machine language program curr ently in
memory on disk or cassette tape.

The program f r om <start address> to <end address> in
memory is saved on disk or cassette tape.

I f no drive name is specified, the program is saved
on the current drive.

<start address> defines the default execution address.

The s option saves the content of video RAM to the
f ile.

See also "B LOAD, • .

BSAVE "TIMER " , &HCOOO, &HCFFF

Saves the program currently in memory from &HCOOO
to &HCFFF on current drive under fil ename "TIMER".

MSX DISK BASIC REFERENCE GUIDE

CLOSE

S�T�:

PURPOSE:

COMMENTS :

EXAMPLE:

CLOSE [[l l <f il e number> [, [l) < file number • • • > 1 1

Concludes I/0 to a disk file.

<f ile number> is the number under which the file was
OPENed. A CLOSE with no arguments closes all open
f iles.

The association between a particular file and file
number terminates upon execution of a CLOSE statement.
The file may then be reOPENed using the same or a
different file numbe r ; l i kewise, that file number
may now be reused to OPEN any file.

A CLOSE for a sequential output file writes the f i nal
buffer of output .

The END, CLEAR statements and the NEW command always
CLOSE all disk files automat ically.
(STOP does not close disk files .)

CLOSE 11

222

MSX DISK BASIC REFERENCE GUIDE

COPY

SYNTAX:

PURPOSE:

COMMENTS :

COPY "<f il e spec>" TO " <file spec>�

Copies one or more files to another di sk. If you
prefer, you can give the copies different names.
This command can also copy files on the same disk.

The second option may take three forms:

1 . If the second option is a drive designation
(d:) only, the original file i s copied w i th
the original fil ename to the designated drive.

2 . If the second option is a fil ename only , the
original file is copied to a file on the default
drive with the fil ename specified.

3 . If the second option is a full filespec, the
original file is copied to a file on the default
drive with the fil ename specified.

On a single-drive system, you enter the commands as
you would on a multi-drive system.

If you specify drive B when the �drive A dis k " was
last used, you are pr ompted to insert the disk for
drive B. For exampl e :

COPY "A:TEST. ASC" TO "B : "

After the file is loaded f rom "drive A disk" to
memory, you are prompted as follows.

Insert diskette for drive B :
and strike a key when ready

You remove "A di sk" and insert "B disk " . Then strike
any key (e xcept CONTROL- STOP) . If the file is small ,
copy is compl eted.

But, if the file is big, you must exchange two disks
following the prompted instructions until copy is
compl eted. Because parts of the file a r e loaded and
saved one after another.

If you specify drive A when the "drive B disk " was
last used, you are prompted again to change disks.
This time, BAS IC prompts you to insert the "drive A
di sk". See al so section 3 . 1 . 1 4 .

223

MSX DISK BASIC REFERENCE GUIDE

DSKO

SYNTAX:

COMMENTS :

NOTE :

DSKO <drive_number>, <logical_sector_number >

Writes to the specified sector from memory pointed
to by the content of (0F351H, OF352H) .

<dr ive_numbe r> is 0 for default drive, 1 for drive A,
2 for drive B , and so on.

<logical_sector_number> is a 0 based number. No check
for the val id sector number is made.

This memory area is destroyed when any disk
statements (ex. FILES, OPEN, CLOSE, PRINTf, etc.) are
executed.

224

MSX DISK BASIC REFERENCE GUIDE

FIELD

SYNTAX :

PURPOSE:

COMMENTS :

NOTE :

EXAMPL E 1 :

FIELD [f J <f ile numbe r > ,< f ield width>
AS <string variable> . • •

Allocates space for var iables in a random file
buffer.

Before a GET statement or PUT statement can be
executed, a FIELD statement must be executed to
format the random file buf f e r .

< f i l e numbe r > is the number under which the f i l e was
OPENed. <f ield width> is the number of characters
to be allocated to <string variable> .
For exampl e,

FIELD 1 , 2 0 AS N $, 1 0 AS I D $, 4 0 AS ADD$

allocates the fi rst 2 0 positions (bytes) in the
r andom file buffer to the string variable N $, the
next 1 0 positions to ID $, and the next 40 positions
to ADD $. FIELD does NOT place any data in the
random file buffer. (See "L SET/RSET, " , and "GET, " .)

The total number of bytes allocated in a FIELD
statement must not exceed the record length that was
specified when the file was OPENed. Otherw ise, a
"Field overflow" error occur s .
<The default record length is 2 5 6 bytes. >

Any number of FIELD statements may be executed for
the same file. All FIELD statements that have been
executed will remain in effect at the same time.

Do not use a FIELDed variable name in an INPUT or
LET statement. Once a variable name is FIELDed,
it points to the cor r ect place in the random file
buffer. If a subsequent INPUT or LET statement with
that variable name is executed, the variabl e ' s
pointer is moved to string space.

1 0 OPEN "A: PBONELST" AS tl LEN= 3 5
1 5 FIELD # 1 , 2 AS RECNBR$,33 AS DUMMY$
20 FIELD # 1 , 2 5 AS NAMES, l O AS PHONENB R$
2 5 GET tl
3 0 TOTAL=GV I (RECNBR) $
3 5 FOR I=2 TO TOTAL
4 0 GET i l , I
4 5 PRINT NAMES, PHONENBR$
50 NEXT I

Illustrates a multiple defined FIELD statement . In
statement 1 5 , the 3 5 byte f i el d is defined for the
f i rst record to keep track of the number of records

225

MSX DISK BASIC REFERENCE GUIDE

EXAMPLE 2 :

EXAMPLE 3 :

in the file. In the next loop of statements (35-50) ,
statement 2 0 defines the fiel d for indiv idual names
and phone numbers.

1 0 FOR LOOP%=0 TO 7
20 FIELD #l , (LOOP%*16) AS 0FFSETS, l 6 AS A $ (LOOP%)
3 0 NEXT LOOP%

Shows the construction of a FIELD statement using
an array of elements of equal size. The result i s
equivalent to the single decl aration:

FIELD il,l6 AS A $ (0) , 1 6 AS A $ (1) , • • • , 1 6 AS A $ (6)
, 1 6 AS A $ (7)

1 0 DIM SIZ E% (NUMB% } : REM ARRAY OF FIELD SIZ ES
20 FOR LOOP%=0 TO NUMB% : READ SIZ E\ { LOOP%} : NEXT LOOP%
30 DATA 9 , 1 0 , 1 2 ,2 1 , 41

1 2 0 DIM A $ (NUMB%) : REM ARRAY OF FIELDED VARIABLES
1 3 0 OFFSET%=0
1 40 FOR LOOP%=0 TO NUMB%
1 5 0 FIELD # ! , OFFSET% AS OFFSET $, SIZ E% (LOOP%)
AS A$ (LOOP%)
16 0 OFFSET%=0FFSET%+SIZ E% (LOOP%)
17 0 NEXT LOOP%

Creates a field in the same manner as Example 2 .
However, the element siz e varies with each element.
The equivalent declaration i s :

FIELD t l , SIZE% (0) AS A $ (0) , SIZ E% (1) AS A $ (1) , • • •

SIZE% (NUMB%) AS A $ (NUMB%)

226

MSX DISK BASIC REFERENCE GUIDE

FILES and LFILES

SYNTAX:

PURPOSE:

COMMENTS :

EXAMPL E :

FILES [" <f ile spec>"]
LFILES (" <f ile spec> "]

Displays or prints f ile names of disk files.

The f il e names designated by the <file spec> are
di splayed. If the designated file does not exists,
"Fil e not found" error is occurs.

If no <file spec> is specified, all file names in the
current drive are di splayed.

There can
substitute
extension.
substitute

be question mark (?) in the f i l e name to
for a character in the f il e name or

And, there can be asterisk < * > to
for any file name or extension.

If the drive name is designated, the file names in
that drive is displayed, else in current drive.

The LFILES command outputs file names not to display
but to printer.

FILES "B : * . BAS"

227

MSX DISK BASIC REFERENCE GUIDE

FORMAT

SYNTAX :

PURPOSE:

COMMENTS :

NOTE ;

CALL FORMAT
or

_FORMAT

Initializes a disk.

Menu is displayed as follows.

Drive name? CA, B) _

Select a drive name
the drive name,
displayed.

carefully. After you enter
the following message is

Strike a key when ready_

After you insert the new disk in the drive and
press any key on the keyboard.

When the formatting is finished, BASIC will issue
the following message.

Format compl ete

If a used disk is formatted, all files in that
disk i s destroyed.

New disks must be formatted before use.

The format procedure may be different with this
description. For exampl e, you can choose disk
format from single side or double side with some
disk driver. see your disk driver ' s manual .

228

MSX DISK BASIC REFERENCE GUIDE

GET

SYNTAX:

PURPOSE:

COMMENTS :

EXAMPLE:

NOTE :

GET [t l < fil e numbe r > l , <record numbe r > l

Reads a record f r om a random disk f i l e into a random
buffer.

<file number > i s the number under which the file was
OPENed. If <record number> is omitted, the next
record (after the last GET) is read into the buffer.
The largest possible record number is 4 , 2 94 , 967 , 2 9 5 .

10 OPEN "SAMPLE. DAT " AS 11
20 FIELD t 1 , 2 AS A $, 1 0 AS B $
30 FOR I%=1 TO 1 0
40 GET #1, I%
50 PRINT CV I (A$) ; B $
60 NEXT
7 0 CLOSE tl
80 END

After an execution of a GET statement, INPUTt and
LINE INPUTt may be executed to read characters f rom
the random file buf fer.

229

MSX DISK BASIC REFERENCE GUIDE

INPUTf

SYNTAX:

PURPOSE:

COMMENTS :

EXAMPLE:

INPUTt<file number> , <variable list>

Reads data items from a seq uential disk file and
assigns them to program variables.

<file number> i s the number used when the file was
OPENed for input. <variable l ist> contains the
variable names that will be assigned to the items in
the f ile. (The variable type must match the type
speci fied by the variable name .)
With INPUT#, no question mark i s printed, as with
INPUT.

The data items in the file should a�pear j ust as they
would if data were being type? �n response to an
INPUT statement. With numer�c values, leading
spaces, carriage returns, and l ine feeds are ignored.
The f i rst character encountered that is not a space,
carr iage return, or l ine feed is assumed to be the
start of a numbe r . The number terminates on a space,
carriage return, line feed, or comma.

If MSX BASIC i s scanning the sequential data f il e for
a string item, leading space s, carriage returns, and
l ine feeds are also ignored. The f irst character
encountered that i s not a space, carriage return, or
l ine feed is assumed to be the start of a string
item. If this fi rst character i s a quotation mark
(") , the string item will consist of all characters
read between the first quotation mark and the second.
Thus, a quoted string may not contain a quotation
mark as a character. If the f i rst character of the
string is not a quotation mark, the string i s an
unquoted string, and will terminate on a comma,
a carriage return, or a line feed (or after 255
characters have been read) . If end-of-file is reached
when a numeric or string item is being INPUT, the
item is terminated.

1 0 OPEN "SAMPLE2 . DAT" FOR INPUT AS il
2 0 INPUT #1, A$
3 0 PRINT A$
4 0 IF EOF(l) =0 THEN 2 0
5 0 CLOSE 11
6 0 END

230

MSX DISK BASIC REFERENCE GUIDE

KILL

S�T�:

PURPOSE:

COMMENTS :

EXAMPLE :

KILL "<file spec>"

Deletes a file from disk.

If a KILL statement is given for a file that is
curr ently OPEN, a "File al ready open" error occurs.

KILL is used for all types of disk files: program
f iles, random data files, and sequential data files.

200 KILL "DATAl . DAT"

MSX DISK BASIC REFERENCE GUIDE

LINE INPUTi

SYNTAX :

PURPOSE:

COMMENTS :

EXAMPLE:

LINE INPUTi<file number>, <str ing variable>

Reads an entire l ine (up to 2 5 4 character s) , without
delimiters, from a sequential disk data f il e to a
string variable.

<file number> is the number under which the file was
OPENed. <string variable> is the variable name to
which the line will be assigned. LINE INPUT# reads
all characters in the sequential file up to a
carri age return. It then skips over the carriage
return/line feed sequence. The next LINE INPUTt reads
all characters up to the next carriage return.
(If a l ine feed/carriage return sequence i s
encountered, i t is understood a s a string ending with
a line feed character.)

LINE INPUTt i s e specially useful if each l ine of a
data f ile has been broken into fields, or if an
MSX BASIC program saved in ASCII format is being read
as data by another program. (See "SAVE, " .)

1 0 OPEN "LIST• FOR OUTPUT AS tl
20 LINE INPUT "CU STOMER INFORMATION? " ; C $
3 0 PRINT # 1 , C$
40 CLOSE 1
50 OPEN "LIST" FOR INPUT AS t1
6 0 LINE INPOT t 1 , C$
70 PRINT C$
80 CLOSE 1
RUN
CUSTOMER INFORMATION? LINDA JONES 2 3 4 , 4 MEMPHIS
L INDA JONES 2 3 4 , 4 MEMPHIS
Ok

232

MSX DISK BASIC REFERENCE GUIDE

LOAD

SYNTAX :

PURPOSE:

COMMENTS :

EXAMPLE:

LOAD <fil ename> l , Rl

Loads a f il e from disk into memory.

<fil ename> is the name that was used when the file
was SAVEd.

The R option automatically runs the program after
it has been loaded.

LOAD closes all open files and deletes all variables
and program l ines currently residing in memory before
i t loads the designated program . However, if the R
option i s used with LOAD, the program is RUN after it
is LOADed, and all open data files are kept open.
Thus , LOAD with the R option may be used to chain
several programs (or segments of the same program) •

Information may be passed between the programs using
their disk data f iles.

Until the designated file is found and started
being loaded, the program in memory is kept.

LOAD "STRTRK" , R

LOAD "B : MYPROG II

233

MSX DISK BASIC REFERENCE GUIDE

LSET and RSET

SWTM:

PURPOSE :

COMMENTS :

EXAMPLE:

NOTE :

LSET <string variable>=<string expression>
RSET <string variable>=<string expression>

Moves data f rom memory to a random file buffer
< in preparation for a PUT statement) .

If <string expression> requires fewer bytes than were
FIELDed to <string variabl e > , LSET left-justifies
the string in the field, and RSET right- justifies the
string. (Spaces are used to pad the extra positions.)
If the string i s too long for the field, characters
are dropped fr om the right. Numeric values must be
converted to strings before they are LSET or RSET.
{ See "MKI $, MKS $, MKD $, " .)

150 LSET A$ =MKS $ (AMT)
160 LSET D$=DESC ($)

LSET o r RSET may
string variable
string in a given
l ines

also be used with a nonfielded
to left-j ustify or right-justify a

f ield. For example , the program

110 A$=SPACE $ (20)
120 RSET A$=N$

right-justify the string N$ in a 20-character field.
This can be very handy for formatting printed output.

234

MSX DISK BASIC REFERENCE GUIDE

MAXFILES

SYNTAX :

PURPOSE:

COMMENTS :

MAXFILES=<expression>

Specifies the maximum number of files opened at a
time.

<expression> can be in
' MAXFILES=O ' is executed,
performed.

235

the range of 0 to 1 5 . When
only SAVE and LOAD can be

MSX DISK BASIC REFERENCE GUIDE

S�T�:

PURPOSE:

COMMENTS :

EXAMPLE :

MERGE <filename>

Merges a specified
curr ently in memory.

disk file into the program

<fil ename> is the name used when the f ile was SAVEd.
The fil e must have been SAVEd in ASCII format. (I f
not, a "Bad f il e mode " er ror occur s . >

I f any lines in the disk file have the same li ne
numbers as lines in the program in memory , the l ines
f r om the file on disk will replace the corr esponding
l ines in memory. (MERGEing may be thought of as
"inserting" the program lines on disk into the
program in memory .)

MSX BASIC always returns to command l evel after
executing a MERGE command.

2�

MSX DISK BASIC REFERENCE GUIDE

N�E

SYNTAX :

PURPOSE:

COMMENTS :

EXAMPL E :

NAME <old f i lespec> AS <new fil ename>

Changes the name of a disk f il e .

<old filespec> must exist and <new filename> must
not exist: otherw ise , an e rror will resul t . After
a NAME command, the file exists on the same disk, in
the same area of disk space, with the new name.

If no drive name i s specified, the cur r ent drive i s
sel ected.

NAME "ACCTSn AS "LEDGER"

In this exampl e, the file that was formerly named
ACCTS will now be named LEDGER.

237

MSX DISK BASIC REFERENCE GUIDE

OPEN

SYNTAX:

PURPOSE :

COMMENTS :

NOTE :

EXAMPL E :

OPEN "<fil espec>" [FOR<mode> l A S [1 1 <file numbe r>
[LEN=<recl en> J

Allows I/O to a disk file.

A disk f il e must
operation can be
allocates a buffer
the mode of access

be OPENed before any disk I/O
performed on that f ile. OPEN

for I/O to the file and determines
that will be used with the buffer.

<mode> is one of the following:

FOR OOTPUT Specif ies sequential output mode.

FOR INPUT Specifies sequential input mode .

FOR APPEND Specifies
end of an

append seq uential
e xistent file.

mode after

default Specifies random input/output mode .

<file numbe r > is an integer expression whose value i s
between one and the maximum number of files specified
in a MAXFILES statement . The number is then associated
with the file as long as i t is OPEN and is used to
refer to other disk I/O statements to the f i l e .

< f il ename> is a string expression containing a name
that conforms to your operating system ' s rules for
disk f ilenames.

<reclen> is an integer expression which, if included,
sets the record l ength for random files. The default
record length i s 256 bytes. The largest possible
record length is 256 . The smallest i s 1 .

I f sequential input or append mode is used for non
existent fil e , •File not found• error occurs. If
sequential output mode is used for existent f ile,
the old file is deleted.

A file can be OPENed for sequential input or r andom
access on more than one file number at a time. A file
may be OPENed for output , however, on only one file
number at a time.

1 0 OPEN "INVEN" FOR INPUT AS t l

238

MSX DISK BASIC REFERENCE GUIDE

PRINTt and PRINTf U SING

SYNTAX :

PURPOSE:

OOM�N� :

PRINTi<f ile numbe r > , [USING <string exp> ; l
< l ist of expr essions>

Writes data to a sequential disk file.

<file number> is the number used when the file was
OPENed for output. <string exp> consists of
formatting characters as described in •PRINT USING. "
The expressions in <l ist of expressions> are the
numeric and/or string expressions that will be
written to the file.

PRINTt does not compress data on the di sk.
of the data is written t o the disk, j ust as
be displayed on the terminal screen with
statement. For this reason, care should be
delimit the data on the disk, so that it
input correctly f rom the di sk.

An image
it would
a PRINT
taken to
will be

In the l ist of expr essions, numeric expressions
should be delimited b¥ semicolons. For exampl e :

PRINTi l , AJB � C ; X � Y ; Z

{ I f commas are used a s delimiters, the extra blanks
that are inserted between print fields will also be
written to the dis k. >

�tring expressions must
1n the list . To format
correctly on the disk, use
l ist of expressions.

be separated by semicolons
the string expressions

expl icit delimiters in the

For exampl e, let A$=•cAMERA" and B $=• 93 6 0 4-l n .
The statement

PRINT#l , A $; B $

would write CAMERA9 3 6 0 4-l to the disk. Because there
are no delimiters, this could not be input as two
separate strings. To correct the problem, insert
explicit delimiters into the PRINTi statement as
fol lows :

The image written to disk is

CAMERA,93604-l

which can be read back into two string var iabl es.

239

MSX DISK BASIC REFERENCE GUIDE

If the strings themselves contain commas, semicolons,
signif icant leading blanks, carriage returns, or line
feeds, write them to disk surr ounded by expl icit
quotation marks, CHR$ (3 4) .

For exampl e, let A$="CAMERA, MJTOMATIC" and
B$=" 93 6 0 4-1 " . The statement

PRINTtl , A $; B $

would write the following image to disk :

CAMERA, AUTOMATIC

And the statement

INPUTt l , A$, B $

936 04-1

would input "CAMERA" to A$ and "AUTOMATIC 93604-1 "
to B $. To separate these strings properly on the
di sk, write double quotation marks to the disk image
using CHR$ (3 4 > . The statement

PRINT#l , CHR$ (34) ; A $; CHR$ (3 4) ; CHR$ (3 4) ; B $; CHR$ (3 4)

writes the following image to disk :

"CAMERA, AUTOMATIC" " 93604-1 II

And the statement

INPUT#l , A $, B $

would input "CAMERA, AUTOMATIC"
" 936 04-1" to B $.

to A $ and

The PRINT# statement may also be used with the USING
option to control the format of the disk file. For
exampl e :

PRINTil, USING "¥¥t t i . I I , " ; J ; K ;L

(Japanase . Refer to 5 . 4 for other versions.)

240

MSX DISK BASIC REFERENCE GUIDE

PUT

SYNTAX:

PURPOSE:

COMMENTS :

EXAMPL E :

NOTE :

PUT £ t 1 <file number > (, <record number>]

Writes a record f rom a random buffer to a random disk
file.

<file number > is the number under which the file
was OPENed. If <record numbe r > i s omitted, the
record will assume the next available record number
(after the last PUT) . The largest possible record
number i s 4 , 294 ,9 67 , 2 95 . The smallest record number
is 1 .

10 OPEN "SAMPLE. DAT" A S #1
20 FIELD t l , 2 AS A $, 10 AS B $
3 0 FOR I\=1 TO 1 0
40 INPUT N\ , S$
50 LSET A$=MKI $ (Nt)
60 LSET B $=S$
7 0 PUT 11 , I%
80 NEXT
90 CLOSE tl
1 0 0 END

LSET or RSET statement must be used to put characters
in the random file buffer before executing a PUT
statement .

Any attempt to read or write past the end of the
buffer causes a •Field overflow• error.

241

MSX DISK BASIC REFERENCE GUIDE

RUN

SYNTAX :

PURPOSE:

COMMENTS :

EXAMPLE :

RUN <fil ename> [, R]

Loads a file f rom disk into memory and runs it.

<filename> i s the name used when the file was SAVEd.

RON closes all open
contents of memory
program. However,
files remain OPEN.

RUN " NE..WFIL " , R

242

files and deletes the current
before loading the designated

with the "Rn option, all data

MSX DISK BASIC REFERENCE GUIDE

SAVE

SYNTAX:

PURPOSE:

COMMENTS :

NOTE :

EXAMPLE :

SAVE <f ilespec> [, AJ

Saves a program file on disk.

<filespec> is a quoted string that conforms t o
MSX-DOS ' s r eq u i r ements for fil enames. If <filespec>
al ready exists, the file will be w ritten over.

Use the A option to save the f il e in ASCII format.
Otherwise, MSX BASIC saves the file in a compr essed
binary format. ASCII format takes more space on the
disk, but some disk access requires that files be in
ASCII format. For instance, the MERGE command
requires a n ASCII format file, and some operating
sy stem commands such as LIST may require an ASCII
format file.

"CSAVE" and "SAVE" are used for binary and ASCI I
save of cassete tape file. But "SAVE" and
"SAVE • • • , A " are used for that cases of disk f ile.

SAVE "COM2 " I A

243

MSX DISK BASIC REFERENCE GUIDE

SYSTEM

SYNTAX :

PURPOSE :

COMMENTS:

CALL SYSTEM
or

_SYSTEM

Exits f rom disk BASIC and returns to MSX-DOS.

This command i s valid only when BASIC has been
booted f rom MSX-DOS .

By this command all files are closed and the program
and the data in memory are destroyed.

244

MSX DISK BASIC REFERENCE GUIDE

VERIFY

SYNTAX:

PURPOSE:

COMMENTS :

NOTE :

CALL VERIFY { ON I OFF }
or

_VERIFY { ON I OFF }

Sets/resets verify (r ead after write) mode.

The VERIFY ON command sets verify mode. Whenever
some data are written into disk, that data are read
f rom disk and verif ied. If the verified data i s not
correct, "DISK I/O error" o�curs.

The VERIFY OFF command resets ver ify mode .

Default mode is VERIFY OFF.

Writing is more rel iabl e but needs longer time in
ver ify mode .

245

MS X DISK BASIC REFERENCE GUIDE

3 . 3 . 2 Functions

CVI, CVS, CVD
DSKF
DSKI $
EOF
INPUT$
LOC
LOF
MKI $, MKS $, MI<D $
VARPI'R

246

MSX DISK BASIC REFERENCE GUIDE

cv r , cvs, cvo

SYNTAX :

PURPOSE:

EXAMPLE :

DSKF

SYNTAX :

PURPOSE :

EXAMPL E :

CVI (< 2-byte string>>
CVS(< 4-byte str ing>)
CVD (< 8-byte string>)

To convert string values t o numedc values. Numeric
values that are read in from a random disk f il e must
be converted f rom strings back into numbers. CVI
converts a 2-byte string to an integer . CVS converts
a 4-byte string t o a single precision number. CVD
converts an 8-byte string to a double-precision
number .

7 0 FIELD # 1 , 4 AS N $, 1 2 AS B $, . . .
80 GET #1
90 Y=CV S (N $)

See al so 11MKI $ I MKS $, MKD$ I n
.

DSKF (<drive numbe r > >

To know free area s i z e of specified disk by K by te.

The drive number corresponds to the drive name a s
follows.

0 default drive
1 drive A :
2 drive B :
and so on

PRINT DSKF (1)

247

MSX DISK BASIC REFERENCE GUIDE

DSKI $

SYNTAX :

PURPOSE:

NOTE :

EOF

SYNTAX :

PURPOSE :

EXAMPL E:

DSKI $ (<dr ive_numbe r >, <logical_sector_number >)

To read the specified sector to memory pointed to
by the content of < OF351 H,O F352Hl .

<dr ive_number> is 0 for def ault drive, 1 for drive A,
2 for drive B, and so on.

<logical_sector_nurnber> is a 0 based numbe r . No check
for the val id sector number i s made.

This memory
statements (ex.
are executed.

area i s
FILES,

destroyed when any disk
OPEN, CLOSE, PRINT#, etc.)

EOF (< file numbe r > >

To know if the end of a sequential file has
reached. Returns -1 <tr ue > if so. Use EOF to
for end-of- file while INPUTting, to avoid "Input
end" errors.

been
test
past

The file specified by the file number must be opened
as sequential input mode .

1 0 OPEN 11DATA" FOR INPUT AS #1
20 C:::;O
3 0 IF EOF (l) THEN 100
40 INPUT #1, �l(C)
50 C==C+l :GOTO 3 0

248

MSX DISK BASIC REFERENCE GUIDE

SYNTAX:

PURPOSE:

EXAMPLE :

SYNTAX:

PURPOSE:

EXAMPLE :

INPUT$

LOC

INPUT$ (X [, [#] Y])

To read data from the terminal or f r om file number Y.
Returns a string of X characters, If the terminal
is used for input, no characters will be echoed. All
control characters are passed through except Control
STOP, which is used to inter r upt the execution of
the INPUT$ function.

5 ' L IST THE CONTENTS OF A SEQUENTIAL FILE IN
H EXADE CI MAL
1 0 OPEN "DATA11 FOR INPUT AS fl
20 IF EOF (l) THEN 50
30 PRINT H EX $ (ASC { INPUT$ (1 , #1))) :
40 GOTO 20
50 PRINT
6 0 END

LOC (<file numbe r >)

where <f ile numbe r> i s the number under which the
f ile was OPENed.

With random disk files, LOC returns the record number
j ust read or w ritten f r om a GET or PUT statement.
If the file was opened but no disk I/0 has been
performed yet, LOC returns a 0 . With seq uential
files, LOC returns the number of records read from
or written to the file since it was OPENed. When no
record is read f r om the sequent ial input file since
it was opened, LOC returns 1, because SYSTEM has read
the first sector.

200 IF LOC (l) >SO THEN STOP

249

MSX DISK BASIC REFERENCE GUIDE

SYNTAX:

PURPOSE :

EXAMPLE :

LOF

LOF (< f il e number>>

LOF returns the siz e of the specified f il e by by te.

IF NUM%>LOF (l) THEN PRINT "I NVAL ID"

MKI $, MKS $, MKD$

SYNTAX :

PURPOSE:

EXAMPLE:

MKI $ (< integer expression>)
MKS S (<single precision expression>>
MKD$ (<double precision expression>>

To convert numeric values to string values. Any
numer ic value that is placed in a random file buffer
with an LSET or RSET statement must be converted to a
string. MKI $ converts an integer to a 2 -byte string.
MKS$ converts a single precision number to a 4-byte
string. MKD$ converts a do uble precision number to
an 8-byte string.

90 AMT= (K+T)
1 0 0 FIELD # 1 , 8 AS D $, 2 0 AS N$
110 LSET D$=MKS $ (AMT)
120 LSET N$=A$
130 PUT #l

See also "CVI, cvs, CVD, " .

250

MSX DISK BAS IC REFERENCE GUIDE

SYNTAX:

PURPOSE :

EXAMPL E :

VARPI'R

VARPTR < t <f il e numbe r >)

VARPTR returns the address of the f i l e control block
assigned to <f ile numbe r > .

1 0 0 X=USR(VARPTR (tl))

251

MSX DISK BASIC REFERENCE GUIDE

3 . 3 . 3 Error Codes and Error Messages

Code Number Disk Errors

50 Fiel d overflow

Message

A FIELD statement i s attempting to allocate
more bytes than were specif ied for the record
l ength of a random file.

51 Inte rnal error

An internal mal function has occurred i n
MSX BASIC. Report to Microsoft the
conditions under which the message appeared.

5 2 Bad f il e number

A statement or command references a file with
a file number that i s not OPEN or is out of
the range of file numbers specified at
initializ ation.

5 3 File not found

A LOAD, KILL, or OPEN statement references a
f il e that does not exist on the current disk.

5 4 File al ready open

A sequential output mode OPEN statement i s
issued for a file that i s already open; or a
KILL statement i s given for a fil e that i s
open.

55 Input past end

An INPUT statement is executed after all the
data i n the file has been INPUT, or for a
null (empty) file. To avoid this error, use
the EOF function to detect the end-of-file.

56 Bad file name

An ill egal form is used for the fil ename with
a LOAD, SAVE, KILL, or OPEN statement (e. g. ,
a filename with too many characters) .

57 Di rect statement in file

A dir ect statement is
LOADing an ASCII- format
terminated.

252

encountered while
file. The LOAD is

MSX DISK BASI C REFERENCE GUIDE

5 8 Sequential I/O only

A GET or PUT statement is used on a seq uential
file.

5 9 File not open

An input or output statement i s executed on a
not opened f il e.

6 0 Bad allocation table

The disk i s not initial iz ed.

6 1 Bad f il e mode

An attempt is made to use PUT, GET, or LOF
with a sequential file, to LOAD a random
f ile, or to execute an OPEN statement with a
f il e mode other than "FOR INPUT", "FOR OUTPUT"
, .. FOR APPEND" or default (r andom} .

6 2 Bad drive name

A inval i d drive name i s specif ied.

6 4 File still open

The file is not closed.

65 File al ready exists

The f il ename specif ied i n a NAME statement is
i denti cal to a f i lename al ready in use on the
di sk.

66 Disk full

All disk storage space i s in use.

67 Too many files

An attempt is made to create a new file
(using SAVE or OPEN> when all 2 5 5 directory
entries are f ul l .

6 8 Disk w r i te protected

A PUT or PRINT# statement is executed on
a write protected disk.

6 9 Disk I/0 e rror

An I/0 error occurred on a disk I/0

253

MSX DISK BASIC REFERENCE GUIDE

operation.
operating
error .

7 0 Disk offline

It is a fatal er ror ;
system cannot recover

i . e. , the
f rom the

There i s no disk in the specified drive.

7 1 Rename across disk

A RENAME sta tement is executed, across one
drive to another.

254

MSX-DOS BOOT PROCEDURE

3 . 4 MSX-DOS Boot Procedure

1) Boot Procedure

When all the buffers for the disk system are successfully
allocated, the disk ROM checks the contents of address OFEDAH
to see if a ROM cartr idge has set the hook (H. STKE) to gain
control of the disk system. If the contents is not a • RET'
instruction (0C9H) , the disk ROM sets up environments for disk
BASIC and j umps to this hook.

The disk ROM next checks if there is an existing cartr idge
which has a TEXT entry in the cartridge heade r . I f such a
cartr idge i s found, the disk ROM sets up env ironments for disk
BASIC and executes the BASIC program f rom the cartridge.

Next, the f i rst sector of a fi rst track < logical sector number
0) is read and transferred to OCOOOH to OCOFFH. If this read
routine fails because of a drive not ready, a read error, o r
i f the f irst by te of the boot sector i s not O EB H nor O E9H,
disk BASIC starts up.

Next, address OCOlEH is cal l ed with the carry flag set. This
routine is provided so as to make game or other appl ication
programs take control of the disk system. The standard boot
sector (provided) will j ust execute a ' RET' instruction if the
carry flag i s reset.

The ROM program next does a non-destructive memory check. If
a 6 4K-byte RAM is not available, the program transfers control
to disk BASIC.

Next the environments for MSXDOS are set up, and the routine
j umps to OCOlEH with the carry flag set. Our standard boot
sector loads MSXDOS. SYS at lOOH and j umps to it. If MSXDOS. SYS
not present, disk BASIC is invoked.

MSXDOS. SYS loads COMMAND. COM at lOOH and j wnps to it. If
COMMAND. COM is not present, the routine prompts the user to
insert a diskette with COMMAND. COM i n it.

2) AUTOEXEC. BAT

When MSXDOS i s first booted, it searches for a file named
AUTOEXEC. BAT and executes it as a batch file.

3) AUTOEXEC. BAS

When MSX disk BASIC is fi rst invoked, it looks for a file
named AUTOEXEC. BAS and executes it as a BASIC program.

255

MSX-DOS AND DISK BASIC DISK DRIVER

3 . 5 MSX-DOS and MSX Disk BASIC Disk D�iver

The following values must be defined and declared as PUBLIC by
the person or organization doing the interfacing.

MYS IZ E

SECLEN

DEFDPB

Byte siz e of the work area used by the drive�.

The maximum sector size for the media supported by the
driver.

The base address of the DPB (which consists of 1 8 bytes)
for the media having the largest value for FATSIZ *SECS IZ .

The follow ing subroutines must be provided and declared as PUBLIC
by the person or organization doing the interfacing.

INIHRD
DRIVES
INIENV
DSKIO
DSKCHG
GETDPB
CHOICE
DSKFMT
OEMSTATEMENT

Initial iz e hardware
Return number of drives in system
Initial iz e work area
Read/Wr ite to disk
Get disk change status
Get drive parameter block
Return character string for disk formatting
Format disk
(Entry point for use in system expansion)

The following is a detailed description the above routines.

INIHRD

Input s :
None

Output s :
None

Register s :
AF, BC, DE, HL, IX, I Y may be affected.

This routine initializes the hardware as soon as the
control passes to the cartridge. Note that no work area
is assigned when th is routine is initiated.

256

MSX-DOS AND DISK BASIC DISK DRIVER

DRIVES

INIENV

Inputs :

Output s :

[F] = The z ero
phy si cal
drives.

flag
drive

is reset in case one
must act as two logical

[L] = Number of drives connected

Register s :
F , HL, IX, I Y may be affected.

Before any other processing can be done , the number of
drives connected to the cartr idge must be counted.
If more than one drive i s detected, or i f the zero flag
passed f rom the call ing routine is set, the number of
drives i s returned (unmodif ied) .

If only one drive has been detected and the zero flag
passed i s reset, a ' 2 ' must be returned as the number of
drives, and the DSKIO and DSKFMT routines must logi cally
support two drives. Use the PROMPT routine (described
below) when sw itching drives.

When th is routine is entered, the work area for the driver
i s already allocated.

Inputs :
None

Outputs :
None

Register s :
AF, BC, DE, HL, IX, IY may be affected.

This entry initial iz es the work area (envi ronment) .

==�======:====
=

=

INIHRD, DRIVES and IN IENV are called
once during initial iz ation, in the
order.

257

only
above

=
=
=

MSX-DOS AND DISK BASIC DISK DRIVER

DSKIO

Inputs :

output s :

I F l = Carry flag reset for read,
set for write

[A] = Drive number (starts at 0)
[B) = Number of sectors to read/write
[Cl = Media descriptor
[DE] = Logical sector number (starts at
[HLJ = Transfer address

If successf ul ,
Otherw ise ,

carry flag cleared.
carry flag set,
error code is placed
number of remaining
i n [BJ .

Registers :
AF, BC, DE, HL , IX, IY may be affected.

0)

in [AI ,
sectors

The drive number and media descriptor come f rom the drive
parameter block. The number of sectors may range from 1
to 2 5 5 . The logical sector numbers start at zero and is
incremented in ones, so the I/O system must map these the
logical sector numbe rs into tracks and sectors. The
logical sector 0 co r r esponds to track O , sector 1 .

The error codes are defined as follow s :

0 Write protected
2 Not ready
4 Data (CRC) er ror
6 Seek error
8 Record not found
10 Write fault
1 2 Other errors

258

MSX-DOS AND DISK BASIC DISK DRIVER

DSKCHG

Inputs :

Output s :

[NOTE]

[A] = Drive number
[B] = 0
[CJ = Media descriptor
[HL1 = Base address of DPB

If successful :
Carry flag reset,
[Bl = Disk change status

EL SE:

1 Disk unchanged
0 Unknown

-1 Disk changed

Carry flag set,
Error code in [A] (same as DSKIO above)

If the disk has been changed or may have been changed
(Unknown) , read the boot sector or the f i rst byte of the
FAT of the currently inserted disk and transfer a new DPB
as with the GETDPB call described below.

Register s :
AF, BC, DE, HL , IX, I Y may be affected.

259

MSX-DOS AND DISK BASIC DISK DR IVER

GETDPB

Inputs :

Outputs :

[A) =
[B] =

[C) =
[HL] =

Drive number
Fi rst byte of FAT
Media descriptor
Base address of DPB

[HL+ll • • (HL+l 81 = DPB for the specifi ed drive

The Drive Descriptor Block (DPB) is defined as follow s :

MEDIA
SECSIZ
DIRMSK
DIRSHFT
CLUSMSK
CLUSSHFT
FIRFAT
FATCNT
MAXENT
FIRREC

MAXCLUS

FATSIZ
FIRDIR

Byte
Word
Byte
Byte
Byte
Byte
Word
Byte
Byte
word

Word

Byte
Word

Media type
Sector siz e (Must be 2 A n)
(SECS IZ / 3 2) -1
Number of one bits in DIRMSK
< Sectors per cluster) -1
(Number of one bits in CLUSMSR) +l
Logical sector number of f i rst FAT
Number of FATs
Number of directory entries (Max=2 54)
Logical sector number of where the data
area starts
< Number of clusters on drive [not
including reserved sectors, FAT sectors,
or dir ectory sectors]) +l
Number of sectors used
FAT logical sector number of start of
directory

Note that the logical sector number always begins at zer o .

260

MSX-DOS AND DISK BASIC DISK DRIVER

CHOICE
Returns in [HLl the pointer to the character string
(terminated by a z ero) that is used as a user prompt in

menu form by the main code. The simpl est form of the
routine be as follows.

CHOISE: LD HL, CHOMSG
RET

.
I

CHOMSG : DEFB ' 1 - Single sided, 8 sector s ' , CR , LF
DEFB ' 2 - Single sided, 9 sectors 1 , CR, LF
DEFB 1 3 - Double sided, 8 sectors 1 , CR, LF
DEFB I 4 - Double sided, 9 sectors 1 , CR, LF
DEFB 0

If there i s no choice (i . e. , only one format is supported) ,
return with 0 in [HL1 register.

All registers except SP may be affected.

261

MSX-DOS AND DISK BASIC DISK DRIVER

DSKFMT
Formats a disk , both phy sically and logically.
parameters are as follows.

The input

[A] Choice specif ied by the user (1 to 9) .
Meaningl ess unless there i s a choice.

[Dl Drive number , beginning at zero
[HLJ Beginning address of the work area which

can be used by the format process.
[BCl Length of the work area described above.

All registers except SP may be affected.

This routine formats all of the disk ' s tracks physically,
writing the boot sector, and clearing FATs and directory
ent r i es.

' Cl earing FATs' means:

Writing the media descriptor byte at the f irst
byte, writing OFFH at the second and the third
byte, and f il l ing the remainder with O ' s

' Cl earing directory entries' means :

Fill ing all by tes with O ' s

I f the format ends successful ly, return with carry
flag reset, otherwise return with carry flag set.
The error codes a r e defined as follows:

[NOTE J

0 Write protected
2 Not r eady
4 Data (CRC) e r ror
6 Seek er ror
8 Reco rd not found
10 Write faul t
1 2 Bad parameter
1 4 Insuffici ent memory
1 6 Other errors

No prompting messages should be generated by this routine.

OEMSTATEMENT

Statement for system expa nsion for use by OEMs. After
disk BASIC scans its own e xpanded statements, control is
passed to this entry. The call ing sequence is identical
to using a general-purpose expansion statement handl er.
If your ROM does not have expansion statements, set the
car ry flag and do a z a o ' RET' instruction.

262

MSX-DOS AND DISK BASIC DISK DRIVER

*
*
*
*

Some useful external routines
*
*
*

*

PROMPT

SETINT

PRVINT

GETS LOT

GETWRK

DIV16

ENASLT

XFER

Prints a message as follows and waits for the user to
enter a key from the keyboa rd.

' Inse rt diskette for drive X :
and strike a key when ready '

The ' X ' is the drive name of the curr ent target drive of
your cartridge.

This routine saves
location specific
interrupt hook.
should be passed
for details.

This routine j umps
have overw ritten.
for details.

a previously set interrupt hook to a
to your cartridge, and sets the new

The address of the inter rupt routine
via the [HL] register. See DSKDRV. Z80

to the interrupt hook that you might
Requires no ar gument. See DSKDRV . Z80

Gets the slot address (i . e. , where I am) in [A) .
Preserves DE, IX� IY

Gets the base of the work area in [I X l and [HL] •

Preserves DE, IY

[BCl = [BCl / [DE] , remainder in l HLl .
Preserves DE, IX, IY

Enables a slot at an address specified by [A] and [HLJ ,
respectively . Destroys all registers.

Moves [BCJ bytes f r om [HL] to [DE] (i . e . , LDIR)
Preserves AF, IX� IY
BC is set to 0 , HL, and DE pointing to the next location
of source and destination, respectively.

Use this routine when a read/write operation i s requested
to 4000H • . 7FFFH, and your hardware does not have any
special mechanism to tr ansfer directly to these areas.

263

MSX-DOS AND DISK BASIC DISK DRIVER

*
* *
*
*

External variables *
*

*

$SECBOF
Pointer to a tempo rary storage which is at least SECLEN
byte long. Prepared for use combined with the XFER
subroutine described above, but can be used TEMPORARILY
for any purpose.

RAMADO , RAMADl , RAMAD2 , RAMAD3

RAWFLG

Slot address of RAM (if present> a t
O O O O H • • 3FFFH , 4000H • • 7FFFH , 8000H . • BFFFH , COOOH. FFFFH
respectively .

Read-After-Write flag. When this byte contains non-0
val ue, the disk driver should do a read-after-write check.
However, it is compl etely up to the driver whether to do
the check or not.

264

MSX-DOS AND DISK BASIC DISK DRIVER

How to determine media type s

a) Read the boot sector (track o , sector 1) o f the target drive.

b) Check if the fi rst byte is either O E9 H or OEBH < the JMP
instruction on the 8 0 86)

c) I f step b) fails, the disk i s a version prior to MS-DOS 2 . 0 ;
therefore, use the f irst byte of FAT passed f rom the caller and
make sure it is between OF8H and OFFH.

I f step c) is succe ssful, use this as a media descriptor.
If step c) fails, then this disk cannot be read.

d) If step b) succeeds, read by tes t OB to t lD. This i s the
DPB for MS-DOS, Version 2 . 0 and above. The DPB for MSXDOS can
be obtained as follows.

+00
+03
+OB
+OC
+OD
+O E
+OF
+10
+11
+12
+13
+1 4
+15
+16
+17
+1 8
+19
+lA
+lB
+lC
+lD

Contents of MS-DOS boot sector

OE9H,XX , XX o r O EB H , XX , XX
ASCI I string of OEM name
Bytes pe r sector

Sectors per cluster
Number of reserved sectors

Number of FATs
Number of directory entries

Total number of sectors in the media

Media descriptor
Number of sectors per FAT

Sectors per track

Number of heads

Number of hidden sectors

265

< low)
(high)

(low>
{ high)

(low)
(high)
(low >
(high)

(low)
(hi gh)
(low)
(high)
(low>
(high)
< low)
(high)

MSX-DOS AND DISK BASIC DISK DRIVER

MS-DOS Disk formats

For 3 , 3 . 5 , and 5 inch disks (IBM PC format)

track number 8=80 , 4=40
Sector count 8 or 9
Head count 1 or 2

�---------------�----�---�---�---T�----�--- T----T----,

I 891 1 892 1 881 1 882 1 I 491 1 492 1 481 1 482 1
�----------------+-- --+----+----+---- ++----+----+----+----;

I Root directory I 112 1 112 1 112 1 112 1 J 6 4 1 112 1 6 4 1 112 1
I entry I I I I I I I I I I
�---------------+-- --+----+----+----++----+----+----+----;

! Media descriptor i 0F8H I OF9H I OFAH I OFBH I I OFCH I OFDH I OFEH I OFFH I
I byte (FATID) I I I I I I I I I I
�----------------+----+----+----+----++----+----+----+----;

I Sectors per FAT I 2 I 3 I 1 1 2 1 I 2 I 2 I 1 1 1 1
�---------------+----+----+----+----++----+----+----+----;

! Sectors/track I 9 1 9 1 8 1 8 1 1 9 1 9 1 8 1 8 1
�---------------+----+----+----+----++----+----+----+----;

I No. of sides I 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1
�---------------+----+----+----+----++----+----+----+----;

! T r acks/side I 80 1 80 1 80 1 80 1 1 40 1 40 1 40 1 40 1
�---------------+----+ ---+----+----++----+----+----+----;

! Bytes/sector I 512 1 51 2 1 512 1 51 2 1 1 512 1 512 1 512 1 512 1
r----------------+----+----+----+----++----+----+----+----;

I No. of FATs I 2 1 2 I 2 1 2 I I 2 I 2 1 2 I 2 1
r----------------+----+----+----+- - - - ++----+----+----+----�

! Sectors/cluster I 2 1 2 1 2 1 2 1 I 1 1 2 1 1 1 2 1
�---------------- � - - - � - - - � - - - �---�·----�---�---._---�

266

MSX-DOS SYSTEM CALLS

3 . 6 MSX-DOS System Calls

l) File Control Block (FCB) and Di rectory Entry

User-set record size (Defaul t=l2 8 bytes) --.

r- Drive name (O=defaul t, l =A :)
I

+0 0

Current block -.,
I
I
I
I

r---+---�------�------.,
File name

L.---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---..1

+1 6
,.---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---....
I File siz e I Date I Time I I I I I I
�-------------- �------._------L---�---�------- �------4-------�

I
Device ID _ ...

Directory location _ ...

First cluster of a file -..a

Last cluster accessed -.a

Last cluster <relative to the beginning of a file) accessed �

r- Cur r ent record
I

+3 2
,.---T---�--T--- .,.---.,

I Random record I
'--- -+--- .J..-- - +- - - +--- -t

I I I
I �Val id� I l � If record size is greater than 6 3
I I
I Val id I � If record size is less than 6 4

Di rectory format

+0 0
File attr ibutes - ,

I
r--- T-- - "1"--------------- ,

I F i1 e name I I I
�---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---�

+16
r---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+----+

I I Time I Date I Fi rst I File siz e I
�-----------------------+------- .J..-- - .J..---·-------+---------------..1

Fi rst cluster of a file -.a

267

MSX-DOS SYSTEM CALLS

2) Driv e Parameter Block (DBP)

.-- Drive number
I r-- Media ID byte
I r-- Sector size
I .--- Di rectory mask
I .-- Directory shift
I r-- Cluster mask
I .--- Cluster shift
I �- Fi rst FAT sector
I .--- # of FATs
1 .-- # of directory

+00 entries
.- - - - � - - � - - - - - - � - - ,- - - � - - � - - ,- - - - - - - � - - � - - �

I I I I I I
1----+---+---+---+---+---+---+---+---+---+---+----1

+12
1----+---+---+---+----+---+---+---+---+---+---+----t
I I I I I I
.._ ______ ..._ ______ ..._ _ _ .l,.- ______ ..._ ______ _,

...__ Pointer to FAT
...__ Fi rst di rectory sector

...__ t of sectors pe r FAT
..._ _ t of clusters + 1

�-- First data sector

3) File Allocation Tabl e (FAT)

MSB LSB

... --- ------------------- ---------,
0 I 07 06 05 04 03 02 01 00 I +--- Base

.. ---------------� I � FAT 0
l I 03 02 01 00 I ll 10 0 9 0 8 l

I L---------------,
2 I ll 1 0 0 9 0 8 07 06 05 0 4 I � FAT l

1----------------+----------------t
3 I 07 06 05 0 4 03 02 01 00 I

1----------------, I � FAT 2
4 I 03 02 01 00 I ll 1 0 0 9 0 8 I

I L--- ------------ -1
5 I ll 1 0 0 9 0 8 07 06 05 04 I +-- FAT 3

�-------------------------------�

268

of FAT

MSX-DOS SYSTEM CALLS

4) System call entry

F37DH - MSX disk BASIC
OOOSH - MSX-DOS

To invoke a system cal l , call this entry with C register
containing the function numbe r .

5) System call specification

[Notes]

1) ' Compatibil ity ' means ' compatibil ity
CP/M i s a registered t rademark
Research, Inc.

with CP/M ' .
of Digital

2) Function cal l s entitled ' no function'
return a 0 in the A register.

will only

0 0 SYSTEM RESET

Parameter s :
Returns:
Function:

Compatibility :

01 CONSOLE INPUT

Paramete r s :
Returns :
Function:

Compatibil ity :

02 CONSOLE OUTPUT

Parameters :
Returns:
Function:
Compatibil ity :

None
None
I f MSX-DOS

Jumps to OOOOH.
Else

Jumps to warm start of disk BASIC.
Yes

None
A
Inputs a character from the console.
Checks control-C and does function 0 0 .
Checks control-P and begins echoing to
the printer.
Checks control-N and stops echoing to
the printer.
Echoes the input character .
Yes

E
None
Outputs character in E to the consol e.
Yes

269

MSX-DOS SYSTEM CALLS

03 AUX INPUT

Paramete r s :
Returns :
Function:
Compatibil ity :

04 AU X OUTPUT

Paramete r s :
Returns:
Function:
Compa ti bil i ty :

05 LST OUTPUT

Parameter s :
Returns:
Function:
Compa tibil ity :

06 D IRECT CONSOLE

Paramete r s :
Returns :
Function:

Compatibil ity :

07 D IRECT INPUT

Parameters :
Returns :
Function:

Compatibil i ty :

I/0

None
A
Inputs character f r om an AUX device.
Yes

E
None
Outputs character in E to an AUX device.
Yes

E
None
Outputs character in E to the printer.
Yes

E
A
If E is OFFH

If no input from the consol e
Returns 0 .

Else

Else

Returns the code.
No check.
No echo.

Outputs character in E to the consol e.
Yes

None
A
Inputs character from the console.
No check.
No echo.
No (get I/0 by te >

270

MSX-DOS SYSTEM CALLS

0 8 DIRECT INPUT

Paramete r s :
Returns:
Function:

Compatibil ity :

0 9 STRING OUTPUT

Paramete r s :
Returns:
Function:

Compatibility :

O A B UFFERED INPUT

Parameter s :
Returns:
Function:

Compatibil ity :

OB CONSOLE STATU S

Parameters:
Returns:
Function:

None
A
Inputs character f rom the console.
Checks for control-C.
Checks for control-P.
Checks for control-N.
No echo.
No <set I/O byte)

DE
None
Outputs the string pointed to by
DE to the consol e until a ' $ ' is en
countered in the given string.
Yes

DE
None
Inputs the string f r om co nsol e beginning
at [DE+21 until car r i age return is
input.
[DE+l] is set to the length of input
string, not including the terminator.
The maximum length of the string is
passed via [DE l .
Yes

None
A
If no input f r om the console

Returns 0 .
Else

Returns OFFH.
Cornpatibil i ty : Yes

OC GET VERSION NUMBER

Parameter s :
Returns :
Function:
Compatibil ity :

None
H , L
Sets 0 in H register, 22H in L register.
Yes

271

MSX-DOS SYSTEM CALLS

OD DISK RESET

Paramete r s :
Returns:
Function :

Compatibility :

O E SEL ECT DISK

Parameters :
Returns:
Function:

Campa ti bil i ty :

OF OPEN FILE

Paramete r s :
Returns :
Function:

Compatibil ity :

None
None
Sets default drive to (A:) .
Sets transfer address to BOH.
Flushes out al l sectors which have
been changed but have not been written
to disk.
Yes

E
None
Sets the default drive,
corresponding to A :)
Yes

DE
A

< with a 0

Opens a file specified by an FCB pointed
to by DE.
The record size f ield, the current
block fiel d, the current record f ield,
and the random record f ield should
be set after this function is executed.
The f il e siz e f i eld, the date and time
fields, the device ID field, the
directory location field, the first
cluster field, the last cluster field,
and the last accessed cluster f i el d
is copied from the directory.
If successful

Returns 0 .
Else

Returns OFFH.
Yes

272

MSX-DOS SYSTEM CALLS

1 0 CLOSE FILE

Parameter s :
Returns:
Function:

DE
A
Closes a file specified by an
pointed to by DE.
If success£ ul

Returns 0 .
Else

Returns OFFH.

FCB

Compatibil ity : Yes

11 SEARCH FIRST

Parameter s :
Returns :
Function:

DE
A
Searches for the first occurrence of
a file specified by an FCB pointed to
by DE.
If found

Else

The directory entry (3 2 bytes long)
is copi ed to the transfer addr ess.
Returns 0 .

Returns OFFH.
[Notel

Wild card characters such as (* and
?) are permitted i n the file name.

Compatibil ity : Yes

12 SEARCH NEXT

Paramete r s :
Returns :
Function :

None
A
Searches for the next occurr ence of
a f il e specified by the last • search
f irst ' function call .
I f found

Else

The directory entry (3 2 bytes l ong>
is copied to the transfer address.
Returns 0 .

Returns OFFH.
[Note]

Wild card characters such as (* and
?) are permitted in the file name.

Compatibil ity : Yes

273

MSX-DOS SYSTEM CALLS

13 DELETE FILE

Paramete r s :
Returns:
Function:

DE
A
Deletes a f il e specified by
pointed to by DE.
If successf ul

Returns 0 .
Else

Returns OFFH.
[Note]

Wild card characters such as
?) are permitted in the file

an FCB

(* and
name.

Compatibil ity : Yes

1 4 SEQUENTIAL READ
Paramete r s : DE
Returns:
Function:

A
Reads a record of
by the FCB pointed
transfers the record
address.

a file
to by
to the

specified
DE and
transfer

The record is determined by the current
block fi eld and the cu r rent record
f ield.
The current block field and the current
record f i eld are automatically
incremented upon return.
The record size is always 128 bytes.
If successful

Returns 0 .
Else

Returns 1 .

[NOTE]
This system call is prepared to maintain
compatibility with CP/M. The use of the ' random
block read' function i s str ongly recommended.

Compatibil ity : Yes

274

MSX-DOS SYSTEM CALLS

1 5 SEQUENTIAL WRITE

Parameter s :
Returns:
Function :

DE
A
writes a record to a file specified
by the FCB pointed to by DE f rom the
transfer address. The record i s de ter
mined by the current block field and the
current record f ield.
The current block f ield and the current
record fiel d are automatically
incremented upon return.
The record size is alway s 1 2 8 bytes.
If successful

Returns 0 .
Else

Returns 1 .

[NOTE]
This system call is
compatibil ity with CP/M.
block wri te 1 function is

prepared to maintain
The use of the 1 random

str ongly recommended.

Compatibil ity : Yes

16 CREATE FILE

Paramete r s :
Returns:
Function:

Compatibil ity :

DE
A
Creates a fil e speci f i ed by an FCB
pointed to by DE. If the specifi ed
f il e al ready exists, it i s overwritten.
The record size f ield, the cu rrent
block f i el d, the curr ent record fiel d,
and the random record f ield should
be set after this function is executed.
If successful

Returns 0 .
Else

Returns OFFH.
Yes

275

MSX-DOS SYSTEM CALLS

1 7 RENAME FILE

Parameter s :
Returns :
Function:

Compatibil ity :

1 8 GET LOG IN VECTOR

Paramete r s :
Returns:
Funct ion :

Compatibil ity :

1 9 GET DEFAULT DRIVE

Parameter s :
Returns:
Function:
Compatibil ity :

lA SET DMA ADDRESS

Parameter s :
Returns:
Function;
Compatibil ity :

DE
A
Renames a f il e
FCB pointed to
specif ied by an
If successful

name specified by an
by DE to a f il e name

FCB pointed to by DE+l 6 .

Returns 0 .
Else

Returns OFFH.
[Note)

Yes

None
HL

Wild card characters such as
?) are permitted in the f i l e

<* and
name.

Returns a bit table for on- l ine drives.
Unlike CP/M, all system drives are on
l ine.
Yes

NAME

None
A
Gets the default drive name.
Yes

DE
None
Sets transfer address.
Yes

276

MSX-DOS SYSTEM CALLS

l B GET ALLOCATION

Paramete r s :
Returns :
Function:

Compatibi l i ty :

E
A, BC, DE, HL , IY
Returns information of a drive specif ied
by E.
If drive

A =

BC =
DE =
HL
IX =
IY =

Else

name is valid
Number of sectors/cluster
Sector siz e
Number of clusters on disk
Number of free clusters
Pointer to DPB
Pointer to FAT

A == OFFH
No (Get allocation address)

277

MSX-DOS SYSTEM CALLS

lC

lD

I E

lF

20

21

System calls for CP/M version 2 . 0 or later

NO FUNCTION

Cornpa tibil i ty :

NO FUNCTION

Compa tibility :

NO FUNCTION

Compatibil ity :

NO FUNCTION

Compatibil ity :

NO FUNCTION

Compatibility :

RANDOM READ

Paramete r s :
Returns :
Function:

[NOTE]

No (Set write protect vector)

No (Get write protect vector)

No (Set file attributes)

No (Get disk parameter addr ess)

No (Set/Get user code)

DE
A
Reads a record
by the FCB
transfers the
address.

of a file specified
pointed to by DE and

record to the transfer

The record is determined by the random
block f ield. The random block fiel d
i s not affected by th is function.
The record size is always 1 2 8 bytes.
If successful

Returns 0 .
Else

Returns 1 .

This system call is prepared to maintain
compatibil ity with CP/M. The use of the ' random
block read' function i s strongly recommended .

Compatibil ity : Yes

278

MSX-DOS SYSTEM CALLS

22 RANDOM WRITE

Parameters:
Returns:
Funct ion :

[NOTEJ

DE
A
Writes a record to a file specified
by the FCB pointed to by DE f rom the
transfer address. The record is
determined by the random block f ield.
The random block f ield is not affected
by this function.
The record size is always 128 by tes.
If succe ssf ul

Returns 0 .
Else

Returns 1 .

This sy stem call is prepared
compatibil ity with CP/M. The use
block write ' function i s strongly

to maintain
of the ' random
recommended.

Compatibility : Yes

23 GET FILE SIZ E

Parameters:
Returns:
Function:

Compatibility :

2 4 SET RANDOM RECORD

Parameters:
Retur ns:
Function:

Compatibil ity :

DE
A
Calculates the file siz e Ca multiple
of 1 2 8) of the file specified by the
FCB pointed to by DE, and sets the
f il e siz e to the random record fiel d
of the given FCB.
If successful

Else

Yes

DE
None

Returns o .

Returns OFFH.

Calculates the current record position
f rom the current block field and the
current record field of the given FCB
pointed to by DE, and sets the record
position to the random record field
of the given FCB.
Yes

279

MSX-DOS SYSTEM CALLS

System calls for CP/M version 2 . 2 or later

2 5 NO FUNCTION

Compa tibil ity :

26 RANDOM B LOCK WRITE

Parameters :
Returns:
Function:

Compatibil ity :

27 RANDOM BLOCK READ

Parameters :
Returns:
Function:

Compatibil ity :

No (Resets disk drive)

DE , HL
A
Writes records to a fil e specified
by the FCB pointed to by DE from the
transfer address. The record i s
determined by the random block f iel d.
The current random record field i s
automatically incremented upon
successful return. The record size i s
determined by the record size field.
The number of records to write i s passed
v ia HL.
If success£ ul

Returns 0 .
Else

Returns l .
No (No function)

DE, HL
A, HL
Reads records of a file specified by
the FCB pointed to by DE and transfers
the record to the transfer address.
The record is determined by the random
block fi eld. The curr ent random record
field i s automatically incremented
upon successful return.
The record size is determined by the
record size f ield.
The number of records to read is passed
via HL.
The number of records actually read i s
returned i n HL.
I f successful

Returns 0 in A.
Else

Returns 1 in A .
No (No function>

280

MSX-DOS SYSTEM CALLS

2 8 RANDOM WRITE WITH Z ERO FILL

Parameters:
Returns:
Function:

Cornpa ti bil i ty :

DE
A
Writes a record to a file specified
by the FCB pointed to by DE f r om the
transfer address. The record is
determined by the random block f ield.
The random block f i el d i s not affected
by this f unction.
The record size is always 128 by tes.
When extending a file, all records that
are not written are f il l ed with O ' s .
If successful

Returns 0 .
Else

Returns 1 .

Yes

281

MSX-DOS SYSTEM CALLS

system calls for MSX-DOS only

2 9 NO FUNCTION

Compatibil ity : No

2 A GET DATE

Parameters :
Returns:
Function:

None
HL, DE, A
HL = year
D = month
E = day
A = day of the week

Compatibil ity : No

2B SET DATE

Parameters :
Returns:
Function:

HL, DE
A
Sets current date to the date passed
v ia registers.
The registers are as for ' get date • .
If successful

Returns 0 .
Else

Returns OFFH .
Compa tibil ity : No

2C GET TIME

Parameter s :
Returns:
Function:

Compatibil ity :

None
H , L, D, E
H = hours
L = minutes
D = seconds
E = 1/100 seconds
No

282

MSX-DOS SYSTEM CALLS

2D SET TIME

Paramete rs:
Returns:
Function:

H, L, D, E
A
Sets current time to the date passed
via registers.
The registers are a s for ' get time' .
If successful

Returns 0 .
Else

Returns OFFH.
Compatibil ity : No

2 E SET/RESET VERIFY FLAG

Parameters:
Returns:
Function:

Compatibility :

2F AB SOLUTE DISK READ

Parameters:
Returns:
Function:

Compatibil i ty :

E
None
If E is 0

Reset verify flag.
Else

Set verify flag.
No

DE, H, L
None
Read H sectors fr om logical sector
number DE on the drive specified by
L to the transfer address.
No

3 0 �B SOLUTE DISK WRITE

Parameters:
Returns :
Function:

DE, H, L
None
Write H sectors to logical sector number
DE on the drive specif ied by L from
the transfer address.

Compatibil ity : No

283

MSX-DOS SYSTEM CALLS

6) Di rect BIOS access of MSX-DOS

On many CP/M appl ication programs, the BIOS j ump table is directly
referenced by adding offsets to the contents of addresses l and
2 . To make the above programs wor k, MSX-DOS creates a CP/M-styl e
BIOS f ront end, vectored by the contents of addresses l and 2 .
Due to the differences in f i l e handling between MSX-DOS and CP/M,
only the following entries are guaranteed.

BOOT
WBOOT
CONST
CON IN
CON OUT

Cold boot
Warm boot
Console status
Console input
Console output

284

Z.O.SX-DOS SYSTEM CALLS

7) Zero page usage and memory map of MSX-DOS

0 0 JP WBOOT < used)
01 < Used)
02 < Used)
03
04
OS JP BOOS < used)
06 < Used)
07 < used)
0 8
0 9
O A
OB
oc JP RDSLT (Used)
OD < used)
O E (Used)
OF
10
11
1 2
1 3
1 4 J P WRSLT < Used)
15 (Used)
16 (Used)
17
1 8
1 9
! A
1 B
lC J P CALSLT (Used>
lD (Used)
l E < Used)
1F
20
21
22
23
24 JP ENASLT < Used)
25 < Used)
26 (Used)
27
2 8
2 9
2A
2B
2C
2D
2 E
2F

285

MSX-DOS SYSTEM CALLS

3 0 JP CALLF (Used)
3 1 (Used)
3 2 (Used)
3 3
3 4
3 5
3 6
3 7
3 8 JP INTRPT (Used)
3 9 (Used)
3A (Used)
3 B --- ,

3C I
3D I
3 E I
3F I
40 I
41 I
42 I
43 I
44 I
45 I
46 I
47 I
4 8 I
4 9 I
4A I
4B }--- Routine to switch secondary slots
4 C I
4D I (Used)
4 E I
4F I
50 I
51 I
52 I
53 I
54 I
55 I
56 I
57 I
5 8 I
5 9 I
SA I
5B --- .1

286

MSX-DOS SYSTEM CALLS

SC PCB for f irst ar gument
SD
S E
SF
6 0
61
62
63
6 4
6 5
6 6
67
6 8
6 9
6A
6B
6 C FCB for second ar gument
6D
6 E
6F
7 0
7 1
7 2
7 3
7 4
7 5
76
77
7 8
7 9
7A
7 B
7C
7D
7E
7F
80 Default DMA address

FF
1 0 0 TPA

(Used)
< Used)
(Used)
< used)
(Used)
(Used)
< Used)
(Used)
< Used)
(Used)
(Used)
(Used)
(Used)
(Used)
{ Used)
< Used)
(Used)
< used)
(Used)
(Used)
(Used)
(Used)
< Used)
(Used)
< Used)
(Used)
(Used)
(Used)
< Used)
(Used)
< Used)
(Used)
< used)
< used)
< Used)
< Used}
(Used)
< Used>
< Used)
(Used)

The word at addresses 6 and 7 contains the ' highest available
memory + 1 ' for the TPA.

287

MSX-DOS SYSTEM CALL S

The entry addresses for RDSLT, WRSLT, ENASLT, CAL SLT, and CALLF
are identical to the ROM BIOS. However, pay GREAT attention when
us ing these entries directly. You must make sure that the stack
area i s guaranteed when changing slots. For exampl e, when calling
the ROM B IOS routines from MSX-DOS through CALSLT, page 0 is set
to ROM, and when an interrupt occurs when the ROM BIOS is active,
Page 1 may be set to ROM (i . e. , the disk ROM) , because some
manufact urers are using the timer interr upt hook to stop the motor .

[Memory Map]

Page 3

Page 2

Page 1

Page 0

r-----�

I
I
I

ROM I
B IOS I

I
I

"-----..1

L

,.-----,

RAM

..._ _ _ _ _ _, r-----,

RAM

..-----;-"'---- ---'-;---- --,

RAM

�...-____ .,

I
I
I Disk
I ROM
I
I # 1
I

RAM

,_ _____ .,

t------t

I I
I I
I Di sk I
I ROM I
I I
I i 2 I
I I

Always contained at ' non-expanded slot i O '
' seco ndary slot to of expanded slot t O '

288

or

MSX-DOS SYSTEM CALLS

FCB organization (for disk BASIC)

NOTE

The following information is
only for use by advanced pro
grammers. Please ignore it if
you do not under stand it.

The FCB holds information about file channels. Each
allocated 26 5 bytes, 9 by tes of which are used
interpreter, and the other 256 bytes for buffering.

channel is
by the BASIC

r------T--------------�-----------------------------------,

I Offset l Label I Meaning
I I (For SPCDSK) I (For MSX Disk BASIC)
+------+--------------+------------------------------------i
I +0 I FL. MOD I Mode which the file was opened for I
I +1 I FL. FCA I Pointer to FCB for BOOS (low) I
I +2 I FL. LCA I Pointer to FCB for BOOS (high> I
I +3 I FL . LSA I Back up character I
I +4 I FL. DSK I Device number I
I +5 I FL. SLB I I
I +6 I FL. BPS I Position in FL . BUF I
I +7 I FL. FLG I Holds various information I
I +8 I FL. OPS I Pseudo head position I
1 +9 • • I FL . BUF I 256-byte file buffer I
�- ----�-------------._---------------------------- -------�

289

RS-232C SUPPORT

4 . Other Expansions

4 . 1 MSX RS-232C Support
4 . 1 . 1 Extended BASIC for RS-2 3 2C Communication

1) Set up Communication Parameters
2) Open and Close Communication Channels
3) Seq uential Input and Output
4) Program Load/Save Statements
5) Event Trap Control Statements
6) Miscell aneous Control Statements
7 > Functions
8) Term inal Mode
9) Help Function (Optional)
10) Behavior of Control Signals
11) Handl ing of EOF

4 . 1 . 2 Extended BIOS Call s Handl ing RS-232C
Build a Slot Address Table Entry to the Jump Table
Return Number of Channels
Description of each Extended B IOS call

4 .2 Other MSX Extended B IOS call s
4 . 2 .1 Extended BIOS Calls

1) Broad Cast Command
2) System Exclusive Extended B IOS Call
3) S ummary of Extended B IOS cal l s

4 . 2 . 2 Extended B IOS Maker ID Number
4 . 3 Tenkey Suppo rt on MSX

290

RS-232C SU PPORT

4 . 1 MSX RS-2 32C Suppor t

This section describes the specifications o f the suppo r t for the
RS-2 3 2C commun i cation interf ace on MSX computers.

4 . 1 . 1 Extended BASI C for RS-232C Communication

1) Set up Communication Parameters

CALL COMINI [([<string exp> J [, [<Rx baud rate> J (, [<Tx baud rate>]
(, [< time out>l l 1 J) J

Initializes an RS-232C port w ith the specified parameters. The
<string exp> is a str i ng that specifies the channel control
parameters. See the detailed desciption below.

BAUD RATE
It i s possible to se t a different baud rate for transmitter and
receiver. The possibl e baud rates a r e as follows:

When
for
When
rate

50
7 5

1 1 0
3 0 0

6 00
1 20 0

1 80 0
2 0 0 0

2400
3 6 0 0

4800
7 200

96 00
1 92 0 0

only the receiver ' s baud rate is specified, the baud rate
the transmitter assumes the same speed as the receiver.

only the transmitter ' s baud rate is specified, the baud
for the receiver is set to the default value.

If a negative val ue is specif ied, its absolute val ue is written
to i8253 Timer/Counter directly.

TIME OUT
The RS-232C driver waits for the CTS (Clear To Send) to turn on
or/and XON is received when the character is sent. The driver
generates a time out error if the specified time has elapsed.
The val ue for the time out error is specified in seconds. If
zero (0) is specified, the driver does not generate a time out
error, and the driver waits indef initely.

291

RS-232C SU PPORT

STRING FIELDS

" [0 : 1 [8 [N [l [X [H [N [N [N] J]]]]]] "
l I I I I I I I I
�----------------------

�------------------

L----------------

�--------------
I I I I I
I I I I I

I I I I I
1.------------

Exampl es:

I I I I
I I I I
L----------

I I I

I I I
....__ __ ____ _

I I

J I

I I
�------

1-----

Channel Number
When the system has more
channel , this parameter
the channel numbe r , and
omitted if the system has
channel. The default value

Data length
" 5" : 5 bits
" 6 " : 6 bits
" 7 " : 7 bits
" 8" : 8 bits

Parity flag
" E " : Even parity
"0 " : Odd pa r i ty

than one
specifies
it may be
only one
is o .

" I " : Ignore (Ill egal when data
length is 8 bits)

"N 11 : No parity
Length of stop bits

" 1 " : 1 bit
" 2 " : 1 . 5 bits
" 3 " : 2 bits

XON/XOFF control
" X " : Enable control
"N " : Disable control

CTS- RTS hand-shake
"H " : Handshaking
"N" : No handshaking

Insert Line Feed to buffer when
Carriage Return is received.

"A" : Insert Line Feed to buffer
" N " : Do not insert

Send Line Feed after carriage
Return sent.

"A" : Do not send Line Feed
"N" : Send Line Feed

Shift- in/ Shift-out contr ol. Ill egal
when data length i s other than 7 bits.

ns" : Enable control
"N" : Disable control

CALL COMINI (" 0 : 7 ElXHNNN" , 6 00 , 120 0 , 3 0)
CALL COMIN I (" 8N1 " , 96 00)

The default values for those switches are as follows :

" 0 : 8E3XHNNN " , l 200 , 1 2 0 0 ,0

Note that no previous value is taken as the default. If
omitted, the above values are always assumed.

292

RS-232C SUPPORT

2) Open and Close Communication Channels

OPEN "COM [n] : " [FOR <mode >] AS [#] < f il e numbe r>
This statement opens the RS-232C channel for further
processing. That is, a I/O buffer is allocated and the mode
that will be used with the buffer is set. The RTS signal is
also activatea.

The <mode > i s one of the follow ing :

OUTPUT:
INPUT :

Specif ies sequential
Specif ies sequential

output mode
input mode

If the <mode> clause i s not specif ied, the channel can be
accessed for both input and output and no EOF character
hanal ing i s done .

The <file numbe r> i s an integer expression
between one and the maximum number of f iles
MAXFILES= statement.

whose value i s
specif ied i n a

The <file number> i s the number that is associated w i th the
f il e for as long as i t is OPEN and is used by other I/0
statements reffering to the f il e.

An OPEN statement must be executed before I/0 may be done to
the f il e using any of the following statements. The OPEN
statement must be executed before any statement or f unction
r eq ui ring a file number :

Exampl e :

PRINT # , PRINT t USING
INPUT # , LINE INPUT i
INPUT$

OPEN 11COMO : " AS il

NOTE

Random access to RS-232C channel is
not possible. Logically, only sequential
accesses are permitted.

CLOSE [[#] < f il e number> l ,< f il e number >]]
Closes the channel and releases the associated buffer. If no
<file number >s are specified, all open channels are closed.

If the channel was opened in output mode , the EOF character i s
sent.

293

RS-232C SUPPORT

3) Sequential Input and Output

After the channel is opened in input mode or file mode <open
w ithout <mode> clause) , characters from communication channel
can be sequentially input by one of the follow ing statement s.

INPUT #n
LINE INPUT tn
INPUT$ <fn, m)

After the channel is opened in output mode or f il e mode Copen
without <mode> clause) , characters can be sequentially output to
the communication channel by one of the follow ing statement s.

PRINT #n
PRINT #n USING

Refer to the reference manuals for the language for details on
the statements.

4) Program Load/ Save Statements

SAVE "COM [<n> : l " I , AJ
Sends a BAS I C program to the commun i cation channel . A Contr ol-Z
is treated as the end-of-file character. The program is sent
in ASCII format, whether the optional parameter, "A", is
specified or not. No file nam e i s allowed.

LOAD "COM[<n> :] "
Loads a BASIC program f r om the channel . A LOAD statement closes
all open f iles and deletes the current program from memory . If
the "R" option is specif ied, however, all data files remain
OPEN and the program that i s loaded i s also executed. A
Control-Z is treated as the end-of- file character.

MERGE ''COM I<n> : 1 "
Merges l i nes from a program in ASCII format received through
the communication channel into the program currently in memory.

If some of the l ine numbe r s of the program in memory match l ine
numbers of the incoming (channel) program, the l ines f rom the
program from the channel replaces the matching l i nes. A
Contr ol-Z is treated as the end-of- file character.

After the MERGE command, the merged program will reside in
memory, and control will return to BASIC at the command level .

RUN "COM[<n>: l" [, RJ
Loads a program from the channel into memory and r uns it.

RUN closes all open f il es and deletes the current contents of
memory before loading the designated program. When the "R"
option i s specif ied, however, all data f il es remain OPEN.

294

RS-23 2C SUPPORT

5) Event Trap Control Statements

CALL COMON (" (<n> : 1 ")
Enables event trapping caused by incoming character from the
communication channel .

CALL COMOFF (" [<n> : l ")
Disables event trapping caused by incoming character f rom the
commun ication channel. The commun i cation buffer is flushed.

CALL COMSTOP (" [<n> : J ")
Suspends event trapping caused by incoming character f rom the
communication channel.

CALL COM ([< n> : 1 , GOSUB <l ine numbe r >)
Sets the l ine numbers for BASIC t o trap when characters are
received at the communication channel .

When trap occurs, since CALL COMSTOP i s automatically executed,
received traps can never take place. The RETURN from the trap
routine w il l automatically do CALL COMON unl ess CALL COMOFF
has been explicitly performed inside the trap routine.

Event trapping does not take place when BASIC is not executing
a program. When an error trap (r esulting fr om an ON ERROR
statement> takes place, it automatically disables all trapping
(including ERROR, STRIG , STOP, SPRITE, INTERVAL and KEY) .

6) Miscell aneous Control Statements

An OPEN statement must be executed before any one of follow ing
statements may be executed. The default channel number is 0
for all the follow ing statement s.

CALL OOMBREAK ([" <n> : " J , <expression>)
Sends break characters specif ied by <expression> to the channel
specif ied by < n > . The range of the <expression> should be
between 3 and 32767 .

CALL COMDTR (I '' <n> : •• 1 , <expression>)
Turns off the DTR signal when the <expression> is z ero,
otherw ise turns on the DTR signal.

CALL COMSTAT ([" <n>: " l , <name of vari abl e>)
Reads the status of the communication
returned by the hardware i s assigned
bit assignments are as follows:

295

channe l . The status
to the variable. The

RS-232C SUPPORT

r---------.---,

I B IT NO. I Descript i on
�--------+---�

I
I
I

I

I

I
I
I
I

I
I
I
I
I
I
I
I

I

1 5

1 4

1 3

12

11

10

9
8
7

6

5
4
3

2

1

0

Buffer OVerflow Error
0 : No buffer ov erflow
1 : Buffer overflow

Time Out Error < TMENBT)
0 : No time out error occurred
1 : Time out error occurred

Framing ErJ:"or
0 : No framing error occurred
1 : Framing eJ:"ror occurred

Over Run Error
0 : No over run error occurred
1 : Over run error occurred

Pa rity error
I 0 : Character has no parity error
I 1 : Character has parity error
I Control break key was pressed (BRONBT
I 0 : Control break key not pressed
I 1 : Control break key was pressed
I Not used: Reserved
I Not used: Reserved
I Clear To Send
I 0 : False
I 1 : True
I Timer/Counter Output-2
l 0 : Timer/Counter Output-2 negated
I 1 : Timer/Counter Output-2 asserted
I Not used : Reserved
I Not used: Reserved
I Data Set Ready
I 0 : False
I 1 : True
I B reak Detect
I 0 : Not detected
I 1 : Detected
I Ring Indicator
I 0 : Fal se
I 1 : True
I Carrier Detect
I 0 : False
I 1 : True

I
I

I
I
I
I
I
I
I
I
I
I
I

I
I
I

I

I
I
I
I
I
I
I
I
I
I

I
I

I
I
I
I
I

I
I
I
I
I
I

�--------._--�

296

RS-232C SUPPORT

7) Functions

EOF << file number>>
Returns -1 <true) if the EOF character is received. Otherw ise,
returns 0 . Use EOF to test for end-of-transmission during
INPUT to avoid ' I nput past end' errors.

LOC (<file number>>
Returns the number of characters received in the communication
buffer. The size of the communication buffer is 255 character s.

LOF (<f i l e number>>
Returns the siz e of the free space
communication buf fer.

remaining in the

8) Terminal Mode

CALL COMTERM [(" <n> : ")
Enters a terminal emulator mode . The channel shoul d be closed
when this statement is invoked. The function keys have a
special use in the terminal mode as described below.

F� : Toggles the l iteral mode on/off .
control characters are displayed,
exampl e , a character whose code i s
Initial mode : L iteral mode off

In the l iteral mode ,
offset by 40H. As an

OlH is displayed as "A".

F-7 : Toggles the Half/Full dupl ex mode s. In Half dupl ex mode,
the characte r s typed in are echoed to the screen as
well as sent to the communication channel.
Initial mode : Full dupl ex

F-8: Turn on/off printer echo. When the printer echo is on,
all characters sent to the screen are also echoed to the
printer.
Initial mode : Printer echo off

297

RS-232C SUPPORT

9) Help Function (Optional>

CALL COMHELP[C < n>:) 1
Prints out a brief description of parameters set by a COMINI
statement on the screen as follows.

Initialize statement options

CALL COMINI ("
<Device# { 0 , 1 , 2 • • • 9 } > :
<Character length { 5 , 6 , 7 , 8 } >
<Parity { E , O, I , N}>
<Stop bits { 1 , 2 , 3 } >
<XON/XOFF { X , N } >
<CTS handshaking {H , N }>
<Auto LF on receive {A, N}>
<Auto LF on tr ansmit {A, N} >
<SI/SO { S , N}>"
, < Receiver baud rate>
, <Transmitter baud rate>

Defaul t :
CALL COMINI (• 0 : 8NlXHNNN"

, 1 2 0 0 , 1 20 0 , 0)

298

RS-23 2C SUPPORT

1 0) Behavior of Control Signals

RESET CO MINI OreN CLOSE
- -

RTS : Inactive No effect
DTR : Active Active

Active Inactive
No effect No effect

The RTS signal is affected in the f ollowing cases:

1 . OPEN statement executed: activated
2 . CLOSE statement executed: inactivated
3 . The remaining contents of the communication i s less than 1 6

bytes and the CTS- RTS handshake i s enabl ed : inactivated.
4 . When inactive and the remaining contents of the communication

buffer has more than one byte and CTS- RTS handshaking is
enabl ed : activated.

DTR is affected by the CALL COMDTR and CALL OOMINI statements.

1 1) Handling of EOF

An EOF i s transmitted when a CLOSE statement is executed during
the open mode was output.

RS-2 3 2C SUPPORT

4 . 1 . 2 Extended B IOS Call s Handling RS-232C

The RS-232C driver can be used by appl ication programs using
the "EXTENDED B IOS CALL11 routine. such programs can access the
f unctions i n the RS-232C driver through the entry jump table
w ith inter-slot call function provided in the BIOS. Programmers
can determine the location of this table by using an EXTENDED
BIOS CALL 0 and 1 .

The RS-232C driver i s addressed
functions for the RS-232C driver
calls are described below.

by device number 8 . The
supported by extended B IOS

Build a Slot Address Table Entry to the Jump Table

Number : 0
Function: Builds entry address to the j ump table in the device

driver pointed by l HL1 .
Entry : [B1 == Slot address of table entry for the device

driver
l HL l ; Points to table entry for this device driver

Exi t : (Bl = Slot address of next table entry
[HLl = Points to next table entry

Description: The RS-232C device criver call routine can issue
this function call to determine the slot number and
the location of the j ump table to access the device
driver for the desired channel .

r-----------------------�

[B] : [HL1 ... 1 % Slot address
�----------------------i

!Jump table address (L} I
�----------------------i
IJump table address (H) I
�-----------------------�
I Reserved I
r----------- ------------�

(Bl : [HL] returned� I I
�-----------------------4

% The format of the slot address is same to the MSX standard
notation, which i s :

B i t # 76 543210
FOOOSSPP
I I I I I
I I I ��- Pr imary slot (0-3}
I 1.4.--- - Secondary slot (0-3)
'--------- 1 if secondary slot specified

300

RS-2 3 2C SU PPORT

Return Number Of Channel s

Number :
Function:

Entry :
Exi t :
Description:

1
Returns the number of channels available to the
device driver.
[A] = Contains number of RS-232 channels so far.
[A) = Number of RS-232 channel s updated.
This function i s provided for each RS2 3 2C driver
so as to f ind the channel number for the driver.
Each driver can call this function to get the number
of RS-232C channels installed so far.

The device information byte indicates whether the following
options are install ed or not :

Bits 76543210
I l l I l l I I

I I I I I I I L-----Reserved
I I I I l l I
I I I I I I '------TxReady interrupt
1 1 1 1 1 1

I I I I I '-------Sync/Break character detected
I I I I I
l i l t L--------Timer interr upt
I I I I

I I I '---------Ca rrier detect
I I I

I I '----------Ring indicator
I I

I '-----------Reserved
I
'------------Reserved

The RS-232C driver has entries as follows. Appl ication programs
can use the RS-232C driver by an ' inter-slot cal l ' to those
entries.

EXBTBL: DEFB
J P
J P
J P
J P
JP
JP
JP
JP

JP

JP
JP
J P
NOENT
NOENT
NOENT

DVINFB , O , O
INIT
OPEN
STAT
GETCHR
SNDCHR
CLOSE
EOF
LOC

LOF

BACKUP
SNDBRK
DTR

; Device information
Initial iz e RS-2 3 2C port

; Open RS-23 2C port
Read status
Receive data
Send data

; Close RS-2 3 2C port
; EOF code received

Reports the number of characters in
the receiver buffer

Reports the number of f ree spaces
l ef t in the receiver buffer

; Back up a character
; Send break character
; Turn on/off DTR l ine
; Reserved for future expansion

301

RS-232C SUPPORT

N�E

The RS-232C receiver is driven by the
interr upt generated by the receiver ready.
However, the inter-slot call handler dis
abl es the inter rupt automatically. Thus,
when control returns to the appl ication
program, it must enable an interr upt as
soon as possible, or the RS-232C receiver
routine will lose some of the characters.

302

RS-232C SUPPORT

Oeser iption of each Extended B IOS Call

1) Initial iz e RS-232C Por t CI NIT)

Entry : [HL] = Address of the parameter tabl e
[Bl = Slot address of the parameter table

Return: The carry flag is set if illegal parameters are set.
Modify : [AF]

Description:
Initializes the RS-2 3 2C port with the specified parameters.
This entry must be called before any other function call s are
made . The parameters are similar to the _COMINI expanded
statement of BASIC. However, note that all the ASCII
parameters must be specified with uppe rcase characters only.
(See section 4 . 1 . 1 CALL OOMINI for details of BAUD RATE and
TIME OUT.)

� - ,

(Bl : [HLl --+ I Character Length • s • - • a •
�------------------------------�

I Par i ty I E' , I o• I I I I , I N' I
�------------------------------�

I Stop Bits 1 1 ' , 1 2 ' , ' 3 ' I
�------------------------------�

I XON/XOFF Control ' X' , ' N' I
�-------------------------------�
I CTR-RTS Handshaking 1 H ' , ' N' I
�-------------------------------�
I Auto LF for Receiver ' A' , ' N' I
�------------------------------;

I Auto LF for Sender ' A' , ' N' I
�------------------------------;

I SI/SO Control ' S' , ' N ' I
�------------------------------;

I Receiver Baud Rate (Low) I

50-19200 (High)
r-- -----------------------------;
I Transmitter Baud Rate (low) I

50-19200 (high)
�------------------------------�

I Time Out Counter 0-255 I
L-------------------------------�

303

ASCII
Characters

Binary

RS-232C SUPPORT

2) Open RS-232C port (OPEN)

Entry : l HLl = Addr ess of FCB (must be located higher address
than 8000H)

(C] = Buffer l ength < 32-254)
[E J = Open mode (one of following) :

�---------T------------------ ------------�

! Open Mode I Meaning I
�----------+------------------------------�
I 1 I <I nput> mode I
I 2 I <Output> mode I
I 4 I <Raw> and <Input/Output> mode l
� - - - - - - - - - L- - - - --------------------------�

Returns: The carry flag is set if an error occurs.
Modifies: [AF)

Description :
Opens the RS-232C port with the specified File Control Block
(FCB) . An Open must be executed before any I/0 operations can
be done. Each character received occupies two bytes in the
buffer. One is the received character code itself and the
other is the error status of the received character. An extra
9 bytes are necessary for the working storage for file contr ol .
Note that the buffer length passed by [C) specifies the number
of characters, so the actual length of buffer i s (Cl x 2 + 9
bytes. This buffer area can also be accessed without slot
handl ing whenever the RS232C driver is called (including the
timing when the interrupt from the receiver is generated) .

r-------------------------------�

[HLJ � I 9 bytes for File Control
I
�------------------------------�

I (CJ X 2 Bytes Receiver Buffer I
I I
L---------�------ ---------------�

304

RS-232C SUPPORT

3) Read Status (STAT)

Entry : None
Returns: [HL] = Status Data
Modi f i e s : None

Description:
Returns the status information and error code of the character
j ust read f rom the buffer (not the character j ust received) .

r---------�-------�----------------------------------�

I BIT NO. I Description
�---------+---1

1 5 I Buffer over flow error
I 0 : No buffer over flow
I 1 : Buffer over flow

14 I Time out error { TMENBT)
I 0 : No time out error occurred
I 1 : Time out error occurred

13 I Framing error
I 0 : No f raming error occurred
I 1 : Framing error occurred

1 2 I Over run error
I 0 : No over run error occurred
I 1 : Over run error occurred

1 1 I Par i ty error
I 0 : Character has no parity error
I 1 : Character has par ity error

10 I Control break key was pressed (BRONBT
0 : Control-break was not pressed
1 : Control-break was pressed

9 Reserved
8 Reserved
7 Clear To Send

0 : False
1 : True

6 Timer/Counter Output-2
0 : Timer/Counter Output-2 negated
1 : Timer/Counter Output-2 asserted

5 Reserved
4 Reserved
3 Data set Ready

0 : False
1 : T r ue

2 B reak Detect
0 : Not detected
l : Detected

1 Ring Indicator
0 : Fal se
1 : True

0 Carrier Detect
0 : False
1 : True

---------.A.------------------------- - - - - - - - - - - - -------·-'

305

RS-232C SUPPORT

4) Get A Character From The Receive Buffer (GETCHR)

Entry : None
Returns: [A] = character received

The sign flag i s set if any error occurred.
The carry flag is set if the character is an EOF code
when the port i s opened for i nput mode.

Modif ies: [Fl

Description:
Gets a character from the receiver buffer.
up character if any.

5) Send A Character To The RS- 2 3 2C Port (SNDCHR)

Entry : [A] = Character to send

Returns backed

Return s : The carry flag is set if a control-break was entered.
The zero flag is set if a time out error has
occurred whil e waiting for XON or/and CTS signal.

Modif ies: [F 1

Description:
Sends the specified character to the RS-232C port. The
character flow control by XON/OFF characters and/or the CTS
(Cl ea r To Send) line signal is handled if they had been
initialized. A time out error will be generated if the
spe cif ied time has elapsed while waiting for transmission
permission, and the character will not be sent.

6) Close The RS- 2 3 2C Port (CLOSE)

Entry : None
Returns: The carry flag i s set if an error occurs,
Modif ies : [AF]

De script ion ;

Closes the RS232C
code is sent if the
signal is placed in

port. The buffer i s released, and a EOF
po r t was opened for <output> mode. The RTS
an inactive state.

306

RS-232C SUPPORT

7) Check For The EOF Code (EOF)

Entry : None
Returns: [HL1 = -1 , carry flag set, if next character

o , carry flag reset, if next character
Modi f i e s : [AF]

Description:
Tests whether the next character is an EOF or not.
if the next character is not EOF.

i s EOF.
not EOF.

Returns 0

8) Returns The Number Of Characters In The Receive Buffer (LOC)

Entry : None
Returns : [HL1 = Number of character in the receiver buffer.
Modif ies: [AF]

Description :
Returns the number of val id characters in the receive buffer.
This value includes number of backed-up characters. The
characters after the EOF code are ignored if the transmission
was opened in the <input> mode ; however, they will occupy space
in the buffer.

9) Returns Number Of Free Space In The Receive Buffer (LOF)

Entry : None
Returns : [HL l = number of free space
Modifies: {AFJ

Description:
Returns the number of f ree spaces for characters in the
receiver buffer.

1 0) Back Up A Character (BACKUP)

Ent ry : [C] = Character to back up
Returns : None
Modi f ies : [F)

Description:
Backs up a character in the special buffer . Last backed up
character will be lost if any.

307

RS-232C SUPPORT

1 1) Send Break Character (SND.BRK)

Entry : [DE] � Number of break characters to send
Returns : The carry flag i s set if control break key was pressed.
Modifies: [AF] , [DEl

Descr iption :
Transmits the specified number of break characters. Abo r ts
if a Control-Break i s entered during the transmission and
returns with the carry flag set.

1 2) Turn On/Off DTR Line (DTR)

Entry : [A] = 0 to turn off
[A] = Non- zero to turn on

Returns : None
Modif ies : [F l

Description:
The DTR (Data terminal Ready) line is turned on when a power-on
/ reset ini tial i z e or an !NIT routine is called.

*
* NWE *
* *
* Stack pointer must be located i n PAGE-3 < higher *
* address than OCOOOH) • No registers except those *
* described here should be changed. *
* **

308

OTHER MSX EXTENDED B IOS CALLS

4 . 2 Other MSX Extended B IOS Calls

The extended BIOS call provides a way to access the extended
device drivers via an additional HOOK entry. The device type i s
spe cified by register D, and the function o f the call is specified
by register E. To build a link of an extended BIOS call, each
device driver should nest the Hook properly.

The address of the Hook for the extended B IOS call is : OFFCAH.
The flag bit which indicates whether the HOOK is valid or not
i s : LSB of OFB20H.

NOTE

The stack pointer must be located i n PAGE-3 (addresses
higher than OCOO OH) . No other registers except those
described here should be changed.

4 . 2 . 1 Extended BIOS Calls

1) Broad Cast Command

I f the device number specified by register [D] i s o , this call
should handl e all extended dev ice drivers added to the system.

Build Device Name Table

Number :
Function:
Entry :

Exi t :

0
Build table which contains device numbe r .
[BJ = Slot address of table entry for the device

driver.
[HLJ = Points to table entry for the device driver
(B] = Slot address of next table entry
[HLJ = Points to next table entry

Description: Using this call, the user is provided information on
the type of device driver that must be installed in
the system . To obtain detailed information, such as
the slot number and the address to access driver,
issue a call w ith the device number in [D] and the
function number (which is z ero) in (E) .

r-----------------------,

[Bl : I HLl --+ 1 Device number
r-----------------------�

I Reserved I
r-----------------------�

[B) : l HLl ret urned--+ 1 I
�----------------------J

309

OTHER MSX EXTENDED B IOS CALL S

Re turn Number Of Trap Entries Used

Number :
Function:
Entry :

Exi t :
Description:

1
Adds number of tr aps used in device driver to [A] .
[A] = Contains number of traps used by extended

device driver so far.
[AJ = Number of traps upda ted
There is a l imited number (six) of flags for the
event trap function. This call is provided to
determ ine the flag to use with this device.

Disable Interrupt

Number :
Function:
Entry :
Exi t :
Oeser iption:

2
Disables device driver interrupts.
None
None
This function call is provided to inhibit
interrupts. This feature is useful for improving
the interrupt service response time or to inform
the interrupt-drive routine that the DI instruction
is going to issue.

Enable Interrupt

Number :
Function:
Entry :
Exi t :
Description:

3
Enables device driver interrupts.
None
None
This function call is provided to allow device
drivers to generate interrupts.

310

OTHER MSX EXTENDED B IOS CALL S

2) System Exclusive Extended B IOS Call

This call is provided to allow the installation of special system
software for proprietary use. The sole function specified follows.
All other functions are not specified.

Device number : 255
Number : 0
Function: Builds a table containing the pointer to the B IOS

Entry :

Exit :

functions and device information.
(Bl = Slot address of table entry for the device

driver.
[HL) = Points to table entry for this device driver.
[Bl = Slot address of next table entry
[BLl = Points to next table entry

Description: The caller of the device driver can issue this
number and the
dev ice driver .

function call to determine the slot
location of the j ump table access the

r-----------------------�

[Bl : £BL1 --+ I Slot address
t-----------------------�
I J ump table address (L) I
�-----------------------,
I J urnp table address (H) I
�-----------------------i
I Maker ID I
�-----------------------i

I Reserved I
�----------------------i

[B1 : [HLl returned-+ I I
�----------------------�

NOTE

The Maker ID i s assigned in re sponse to
requests. Manuf act ur ers who provide unique
Maker IDs must al so prov ide the B IOS spe
cif ications to the publ ic.

311

OTHER MSX EXTENDED B IOS CALLS

3 > Summary of Extended B IOS Cal l s

�----- �--,

I lDl I Description I
�----+-------�----------------------------------�

I I (E] I B road cast I
I �------+--------- --------------------------�

I I 0 I Build device name table I
I �------+-----------------------------------;

I 0 I 1 I Return number of Trap Entries use d l
I }-------+-----------------------------------;
I I 2 I Disable interrupt I
I �------+-----------------------------------;

I I 3 I Enable inte rrupt l
�-----+------ -+-----------------------------------�
I I (E) I RS-232C I
I r-------+-----------------------------------;

I 8 I 0 I Build a slot address table I
r �------+---- -------------------------------;

I I 1 I Return number of channel s I
r----+-------+-----------------------------------;

I I lE l I System exclusive I
I �------+-----------------------------------;

I 255 I 0 I Buil d a slot address table I
�---- �------._ _____________________________ _____ J

312

OTHER MSX EXTENDED B IOS CALLS

4 . 2 . 2 Extended BIOS Maker ID Number

The Maker ID i s assigned in response to req uests. A computer
manufacturer not providing a Maker ID listed below must also
provide the BIOS specif ication to the publ ic.

r-------- � ---------------------------- ,

l iD code I Name of manuf acturer
�-------+-----------------------------;

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
1 8
1 9
2 0 *

ASCII
MI CROSOFT
CANON
CASIO KE ISANKI
FUJITSU
GENERAL
H ITACH I SEISAKUSYO
KYO CERA
MA.TSUSHITA DENKI
MITSUBISHI DENKI
N IHON DENKI
NIHON GAKKISEIZOU
NIHON VICTOR
PHILLIPS
PIONEER
SAN YO
SHARP
SONY
SPECTRAV IDEO
TOSHIBA
MITSUMI DENKI

� - - - - - - - - ._ - �

* Added on August 2 1 , 1 984

313

TENKEY SUPPORT

4 . 3 Tenkey Support on MSX

The standard MSX uses nine rows of a key matr ix, but two more rows
(Y9 and YlO) can be added to support an additional sixteen keys.
The follow ing is a l ist of the assignments of the additional keys.

y 9
YlO

X7
4

X6
3

• I

X5
2

{Period) (Comma) (Minus>

X4
1
9

X 3
0
8

X2 Xl
Opt ion Option

7 6

(The Opt ion keys may be used for any purpose .)

314

x o
Option

5

PART D

SOFTWARE DEVELOPMEN T GUIDE

INTERNATIONAL MSX VERSIONS

5 . International MSX Versions and their Differences

5 . 1 Introduction

At present, the MSX computer has the following versions. At a
later time, i t is possible that other versions will be released
for other countries.

Japanese
USA
Internati onal (abbreviated INT in this document)
UK
DIN
French
Korea

5 . 2 Keyboard

5 . 2 . 1 Keyboa rd Hardware

The KANA key of the Japanese version toggles Kana mode and al pha
mode, but the CODE key of international versions, while occupy
ing the same position on the keyboard matrix, the keyboard input
mode for the entry of the next key. Thus , the LED to indi cate
the CODE shift status is unnecessary.

Three keys are pressed simul taneously in the Shift-Graph and
Shif t-Code modes. Using ordinary keyboard sense techniq ues,
the SHIFT, GRAPH , and CODE shift keys must have a diode to
prevent the l oopback cur r ent that causes scanning conf l icts.

316

INTERNATIONAL MSX VERSIONS

5 . 2 . 2 Character Set

The USA, INT, UK, DIN, and French versions have a common
international character set.

o Character Code Table (International)

NOTE : The font of the character ' 0 ' < z ero> is different in DIN
version. See figure.

* * *
* *
* *
* * *
* *
* *

* * *

317

INTERNATIONAL MSX VERSIONS

o Character Code Tabl e (Japanese)

318

INTERNATIONAL MSX VERSIONS

5 . 2 . 3 Keyboard Layout

See the figures in the next section.
have the same keyboard.

About USA, UK, INT versions:

The USA and INT versions

The keyboard diagrams show a dead-key to the l ef t of the
carriage return key, but this is probably not a good place
for it, because it pushes the carriage return key too far to
the right. Manuf acturers may place this key another place,
for exampl e , the right of the right- hand shift key.

About DIN, French versions :
Manufacturers may move the less than and greater than keys
(< , >) t o the left of the left- hand shift key, but must al so
revise the keyboard hardware.

5 . 2 . 4 CAPS Lock

In the CAPS-lock mode, the uppe rcase of cha racters (having both
a lowercase and an uppercase) i s entered. In the CAPS-lock mode
of the J apanese and French versions, when the shift key and an
alphabet key are pressed, the lowercase letter i s entered. When
this i s done in other (USA, UK, DIN, and INT) versions, an
uppe rcase letter is entered.

For the French version, see figure. The marked keys in the
figure are shifted by the CAPS- lock. The CAPS- lock i s not valid
for the graphics and code characte rs.

KANA characters in the Japanese version are val id when the KANA
Lock key is valid. Normally HIRAGANA charcters are entered, and
with the CAPS-Lock key together, KATAKANA characters are entered.
Most of them are not af f ected by the SHIFT key . However, some
of the KANA characters have both upper- and lowercase letters
and are shifted by the SHIFT key. Notice the differences in the
decoding charts.

319

INTERNATIONAL MSX V ERSIONS

o Layout International (USA)

320

INTERNATIONAL MSX VERSIONS

o Decode International (USA)

! I

0

1 i

2

3

4

5

N T I 0 1
0 30 1

Normal
Shift) 29 I

0 09 � Graph
Shift tfl 0-A

f-·· b' EH J
Code ..

Shift l1 D8 I

�
Normal

:38 9

CY F;C . •

G raph · ·- -f-- · .. ·

S h i ft • -·- · ·--f-- .

31
21

A C

9F
AD

39
2R
07
08

!

-�t * lA ' I

'! E7 � �� I
Code : Shi ft l� E2 (

.
/:\0

'27 60 i
;-,Iormal r--... Shift " 22 - 7E

• 05 rm
Graph -

Shift • 03 ;::::- F7
ij B9 (1 E�,

Code Shift , I] B8 . � E4
i c 63 d 64

' ;-,Iormal
Shift c 43 D 44 -

Jl C7 0 BC
Graph

Shift FA .. Cl
1 RD 'i RB

Code
Shift

k fiR [6C �ormal f--· Shift K 4R L 4C
I DU I CH

Graph Shift I DE I C9
i B::l 0 85

Code
Shift B2 6 1 B4

s 73 t 74
Ncmnal Shift s 53 T 54

M oz T 12 Graph Shift X Dl
e 89 u 96

Code Shift

2 I 3 I
2 32 3 :n
��· 40 :!± 23
y:; AB % BA
2 F'D • FC .
:j: D9 § RF
Pt 9E 'lr BE
- 2D = 3D
- :iF I 2R

- 17 .i. Fl
-+- lF - FO

� EE 8 E9

2C . 2E '
< :�c ! > 3£ --
:c. F3 �i: F2
{ AE .,

j AF
cl 86 � A6
A �F i
e sc ,) f 66
E 45 F 46

... CD � 14
..A. CE • D4

j 8C 0 94
0 99

m 6D n 6E
M 4D N 4E
d' on _j 1 B
'? oc • m
,II E6 i'l J\4

N A5
l1 75 v 76
u :i5 v 56

_ co L lA
• C5 I D5

� R2 0 95
E 90

321

4 5 6 7
4 34 5 35 6 36 7 37
$ 24 % 25 "" 5E & 26
:; EF %o RD r F4 r FR

) F:i

I? 9B y 9R Ct EO ;3 El
£ 9C y 90
'\ 5C L 5B I 5D , 3B

-

' 7C l iR I 7D 3A
" lE � 01 J'• OD • 06
I 16 � 02 ' ·"' OE • 04

</J ED w Dl\ u H7
<1> ER �l EA 0 B6

/ 2F a 61 b 62
? 3F . A ·11 B 42

;:>,

/ I D ' (!) C4 ...L 1 1 ,;,t. -
"0 F6 (I) I FE <;)

h "0 C! A7 .
�--� 84 u 97

� A8 , . . : .t\. 8E
· -

g 67 h 6R i 69 j 61\
G 47 H 48 I 49 J 4A
+ 1:) 4 U · - DC I C6
t 10 • D6 • nF .CA
li 81 a Bl i AI <e 91
u 91\ J.. BO IE 92 .

0 6F p 70 q 7 1 r 72
0 4F p 50 Q 51 R 52

. C2
I

DB � cc r 18 - c3 D7 jj cB A9 I
6 A2 u A3 a. 83 6 93

II E3
w 77 X 78 y 79 z 7A
w 57 X 58 y 59 z 5A
.. CF X lC I 19 � OF
� DO • F9 I AA 0 F8
e 88 e 8A a AO a 85

INTERNATIONAL MSX VERSIONS

o Layout UK

322

INTERNATIONAL MSX V ERSIONS

o Decode UK

----- ..

u K 0
) Normal r-

j 0

0 Graph

Code

I
1\ormal

1 Graph �

Code

.. . . .
1\ormal ,

2 Graph
!----··

Code

Normal

3 Graph

Code

Normal

4 Graph

Code

Normal

5 Graph

Code

Shifl) 29
! c 09

Shift (;] UA
n' EH

Shift 11 D8

fl 38

Shiil
c�-, EC

Shift

l E7

Shiit , , I E2

')" - I +
Shiit ?2 i

• 05
Shift • 03

ij B9

Shifl I] B8

c 63

Shift : C 43

0 BC

Shift -

1 8D

Shift

l< 6B
Shift K 4B

I DD
I DE
i 133

Shift I B2
1i 73

Shi! s 5:3
� D2

Shift I DI
e 89

Shift

1
1 :n
' 21

Y� AC

J 9F

!J :19

(28
. 07

• 08
�: 87

Q_
£ 9C

7E

- BB
� - Fi
:j 1::5
--.· E-t
c1 64

D

.. C7

--.._ c .
. 8H 1

1 6C

L 4C

I(�:
6 B5
iS B4
t 74

T 54
T 12

u 96

2
2 32

& 40
� AB

� FD

:t D9

Pt 9E

2D

- 5F

- 1 7
+ IF

.: EE

0 2C

3C

::i F3

'· AE

a 86

..\ 8F
e li:l

4.)
'Y CD

.A.. CE

i 8C

m 6D

l\:1 4D

0" OB
.2. oc
,II E6

ll 75

u 55
_ co
� C5

e 82

:E 90

323

3 4 5 6 7
3 4 34 5 3:> 6 36 7 37

t 23 $ 24 ��() 'r �:-> A. 5E & 26
;,� BA r, EF %0 1m r F4 ,.- FR

• FC) Fr. .
,) .

§ BF c gn y 98 (: EO ,8 £1

qr HE .£ 9C y 9D

-- 3D '- 5C l 5B
-
- 5D 313

' 7C J 7B : 3A 0 !

i Fl '\. lE (Q> 01 p OD • 06
� FO I 16 �

-
... . . OE • 04

e E9 - 60 ¢> ED w DA i.\ 137

ct) E8 Q EA D
2E 2F .. r-·.·-- a 61 b 62

> ') 3F 41 B 42
>) :---·--' :u � F2 / l f) ..!::: • C,J ...L 11

) AF F6
.

I FE

� A6 2 A7
� .

a 84 t) 97

' AS . .
A

f g 6'i h 68 j 69 J
F 46 ! G 4x _: ' -- I 49 J
I- 14 + Li -1 1:{ � � 1 D4 _±_ !(r D6

'
•

ii 94 u 8 1 �\ Bl 1 AI a· 91
{) 99 0 9A A HO ; iE 92
n 6E o 6F p . 70 q 71 r 72
N 4E C 4F

t:

Q 51 R 52
_j lB I• G: �cc c 18
• c::: /jc A9

n A4 6 A� u A3 a 83 6 9.1

N A5 11 E3

v 76 w 77 X 78 y 79 z 7A

v 56 w 57 X 58 5A

L I A � CF X lC I I9 � OF

I D5 • DO e F9 1 AA o F8

0 95 e 88 � 8A a AO a 85

INTERNATIONAL MSX V ERSIONS

o Layout DIN

324

INTERNATIONAL MSX VERSIONS

o Decode DIN

D I N 0 1 2 3 4 5 6 7
0 30 1 31 2 32 3 33 4 34 5 35 6 36 7 37

I\ormal
• r Shift = 3D 21 ·I 22 § BF $ 24 % 25 & 26 / 2F

0
() 09 XI AC Y2 AB X BA II' EF %u BD (F4 / lD

Graph
Shift [!] OA 2 FD n FC F6 J FS "' lE

o EB 7C @ 40 E EE c 87 rt 9B y E7 '\. 5C Code
<; Shift t;, DB I AD Pt 9E '!r BE 80 £ 9C r E2

8 38 9 39 f3 El � >· < 3C ii 81 + 28 ii 94
Normal <l! <l!

0 0 Shift (28) 29 ? 3F "C� > 3E 9A * 2A 99 .. '
1

! :..X) EC . 07]I OD 60 (AE � 01 ± Fl • 06 Graph
Shift • 08 .� OE ' 27 } AF Ill 02 -+ lF • 04

[5B .I 50 8 E9 ..
'V >-, ;;;: F3 ¢ ED (O DA il B7

Code cO r..>

Shi:t I 78 I 7D (, AS • • �.!<: � F2 <!J £8 Q. EA D B6

i a 84 :jt 23 , 2C 2E - 2D a 61 b 62 Nonnal
Shiit A. SE A SE :m 3A SF A 41 B 42 ; -

2
+ 05 - 7E ,... FH I 16 - 17 • C4 _j_ 1 1 T

Graph
Shift • 03 - BB F7 FO I FE � -

IJ H9 17 E5 a. 86 !! A6 Q A7 a EO (\ 97 Cod�
A Shift I] 88 L: E4 SF

c 63 d 64 e 65 f 66 g 67 h 68 i 69 J 6A
Normal

Shift c 43 D 44 E 45 F 46 G 47 H 48 I 49 J 4A

3
0 HC .. C7 'Y CD � 14 + 15 -j 13 - DC I C6 Graph

Shift FA , .. CI A. CE • 04 + 10 D6 • oF l eA - •
i 8D 'i 88 \ 8C f 9F y 98 a BI [AI a; 91

Code A. Shift BO tE 92
k 68 I 6C m 6D n 6E 0 6F p 70 q 71 r 72 Normal

Shift K 48 L 4C M 4D N 4E 0 4F p 50 Q 51 R 52

4 I DD I CB ,j'1 08 _j 18 . C2 . DB �cc I 18 Graph
Shift IDE I C9 if oc • 03 - C3 1� 07 jjC8 A9 I

Code 1 83 5 85 t.t E6 fi A4 6 A2 (l A3 a 83 0 93
Shift 1 82 0 B4 N AS n E3

s 73 t 74 u 75 v 76 w 77 X 78 z 7A y 79 Normal
Shift s 53 T 54 u 55 v 56 w 57 X 58 z 5A y 59

5
� D2 I 12 - co L IA � CF X 1C I 19 � OF

Graph
Shift % Dl � 09 • C5 I D5 -4 DO • F9 AA 0 FS 'l

e 89 fr 96 e 82 (j 95 e 88 e 8A a AO a 85 Code
Shift :E 90 ¥ 90

325

INTERNATIONAL MSX V ERSIONS

o Layout French

�

00

� [i]

�

326

INTERNATIONAL MSX VERSIONS

o Decode French

F R 0 1 2
a 85 & 26 e 82

Normal 31 Shift 0 30 1 2 32

0
0 09 £ AC Y:; AR

Graph
Shift I!] OA I 16 2 FU

0 Ell 7C ((!< 40
Code

£ Shifr_ /:, 08 j AD 90
p 21 r; 87) 29

Normal
Shift 8 38 9 39 {) F8

EC 07 � 01
1

"" .
Graph

• Shift 08 � 02
"j E7 8 E9 I 7D '

Code ; l' c] Shift E2 80 5D
l1 97 :;!: 23 ; 38 Normal

Shift % 25 �- £ 9C 2E

2
+ 05 %o BD F6

Graph
Shift • 03.

ij B9 n E5 a 86
Code

A Shift u 88 2: E4 SF
c 63 d 64 c 65

Normal
Shift c 43 D 44 E 45

3
0 BC .. C7 T CD

Graph
Shift - FA .. Cl A CE

i 8D r 88 I 8C
Code

Shift

k 6B 1 6C ' 2C Normal L 4C Shift K 4B ? 3F

4 I DD I C8 d' OB Graph Shift I DE I C9 -� oc
I B3 0 85 !l E6 Code Shift I 0 84 82 i. AS
s 73 t 74 u 75 Normal

Shift T 54 u s 53 55

5
.. 02 -,- 12 _ co

Graph Shiit X m t 09 •cs
e 89 u 96 y 98

Code Shift

327

3 4 5
' 22 ' 27 (28
3 33 4 34 5 35
!-:;' BA - B8 r; EF

n FC :::::: F7
a EO 60 I 7B

r Pt 9E - 5B
- 2D < 3C A

. . - SF > 3£
17 { AE A �� - .!:<:

. . "0
-+-- lF) AF «:

Qi
·u

¢ ED � F3 A

(!! ES £ F2 . .

3A -· 3D
/ 2F 1- 2B
" IE ± F1
/ lD - FO
!! A6 Q A7

" sc
f 66 g 67 h 68
F 46 c; 47 H 48
1- 14 ' + 15 -! 13
1 04

0 94
0 99

n 6E
N 4E

__) 1 8
• 03

ii A4
:N AS
v 76
v 56
L I A

• D5
0 95

+ 10 • 06
ti 81 a Bl
0 9A 'A 80

0 6F p 70

0 4F p 50
. C2,0B
- c3 . 01
6 A2 0 A3

IT E3
z 7A X. 78
z SA X 58
� CF X IC
� DO • F9
� 88 f 9F

6 7
§ BF e SA
6 36 7 37
r F4 ./ FB

) F5
A 5E E EE
'II" BE - 7E
$ 24 m 6D
* 2A :\.-1 40
p OD • 06
.n OE • 04
� 98 ' i) R7

i) B6
q 71 b 62
Q 51 B 42
- C4 _j_ 1 1
I FE
a 84 /1 El
A 8E
i 69 j 6A
I 49 J 4A

- DC I C6 --
• oF .CA

i AI <e 91
A;: 92

a 61 r 72
A 41 R 52

� cc 1 18
/; CB I A9
a 83 0 93

y 79 w 77
y 59 w 57

I 19
I�

OF
I AA

A AO w OA
¥ 90 Q EA

INTERNATIONAL MSX VERSIONS

o Layout Japanese

328

INTERNAT IONAL MSX VERSIONS

o Decode Japanese 1

J I s 0 I 1 2
0 30 1 31 2 .12

Normal -
Shift , 21 " 22

0 Graph Jj OF n 07 Fl Ol

:h FC l:;�. E7 ,,. EC
Kana

Caps : '7 DC J C7 7 cc
8 3/l 9 39 :m

Normal
Shift (28) 29 3D

1
f--·-'-· .. .
Graph n OD f EO - 17

l)l F:) J:: F6 ! : 1 F. F.
Kana

: Caps ; D5 ::::1 D6 -'-· CE '·'
�-·�

:\A .I 5D . 2C
Normal

Shift * 2A I 7D < 3C

2 Graph • • 81 • 85 + I F

� j- 99 L' Fl i;;, ES

�-

Kana
Cap5 "T R9 1- Dl {. C8

c 6::\ d 64 6r. i e ,)
Normal

Sh:ft c 43 D 44 i F. 45

3 Graph I lA I �- 14 - 1 8

-t- 9F !.,_ 9C � · 92
Kana

Caps '/ BF / BC 1 82
k 6B I 6C m 6D

Normal
Shift K 4TI L 4C M m

4 Graph I •+J l E 5t OB I --

I r, £9 1) F8 i, F:3 I
Kana

Caps I C9 ! I J DR ! -t: D.1 -�.·.
7:l 74 ' 7.') s t u

Normal t-----
Shift s 53 T 54 u 55

5 Graph H· oc - 1 9

(: E4 fp 96 �-� E5
Kana

Caps 1- C4 7] R6 ...,. C5

329

3
' 3 33

t:j: 23

-}(02

;h 91

7 B 1
A 5E

- 7E

·,
"- ED

�, CD

2E ;

�> 3E

}(lD

;s F9

ll.-- D9

f 66

F 46

4
4

$
7]\.
-)

"J

¥

'

I ,J
-
' -

')

•
d;
J

g
G

34

24

03

93

B3

5C

7C ·-
09

BU

EO .

2F
.

:\F
� --·

80

F2

D2

6� ; I ,

47 i
+ 1 :) ' _j 13

li
/ '

ll

N

; 7

: .""1-

'

v
v
I

u
,.

EA

CA

6E

4E

FO

no
76

56

11

EH

CB

; ::< 9i

;\- Hi

0 6F

0 4F

,., F7
--

7 D7

w 77 I
w 57

_,. '- E3

T C3

5 6 7
5 35 6 36 7 ::\7

9-o 2:> & 26 , 27

.-t-. '
04 I 17: 05 ± 06

i. 94 J.; 95 """' F4

:r... B4 ;t B5 -'i" D4

(ii· 40 (5R ' 38
' 60 l

I 78 I 2B

0 84 + 82

DE DF h FA
DE DF v DA

a 61 b 62

- 5F A 41 B 42

• 83 _j 18
/) Fn t) El - 9A -
D DB + Cl �7 BA

h 68 i 69 J 6A
__ ., __ j---

-II 48 : I 49 J 4A

II� OA 16
--

\ 98 i .. - E6 t F.F
7 B8 .. C6 '"? CF -

p 70 q 71 r 72

p 50 Q 51 R 52

Tr 1 0 I 1 2

-t.±" 9E t.:. EO l 9D

-+.: HE 9 co 7, BD

X 78 y 79 z 7A

X .58 y 59 z 5A

X lC if 08

� 9B /.... FD -') E2

+}- HH :..- DD "/ cz

INTERNATIONAL MSX VERSIONS

o Decode J apanese 2

KANA+SHIFT 0 1 2
'

3 4
!

5 6 7

0
t- 86 !) 87 i 89 j_ 8r\ h 8B �· 8C

Caps 7 A6 7 A7 ry A9 �. AA r. AB -\' AC
··-

1
v)l 8D J 8E r A2

-

Caps =- i\D 3 AE i I I A2

2
I A3 A4 Al A5 I .. ,

Caps i J A3 A4 . Al A;) '

3
. . 88 • ;

Caps 1' A8

5
-) 81'

Caps I 1 .. , AF '

330

INTERNATIONAL MSX VERSIONS

5 . 2 . 5 DEAD-KEY Functions

When an "a " , "e", " i " , "o n , • u " ,
SHIFT, GRAPH ICS, CODE, or DEAD
character i s entered instead.
the "a", "e", " i " , " o " , " u " , "y",

or "y • key is entered after the
keys are entered, the accented

The dead-key is valid only for
and SPACE keys.

If a designated character does not exist in the character set, a
normal (non-accented) character is entered. For example, when
the dead key and a "Y" key of the international keyboard are
pressed, an accent grave "y" is not entered, and a normal "y " i s
entered.

The dead-key is an opti onal provision. The dead-key is less
useful in the French and German versions, where special
keyboards must be used, and in English-speaking countries.
Appl ication programs that must use this dead-key are less
compa tible with other versions.

USA, UK, INT Versions
r------------y---------------------- ,

Mode Function
�-----------+----------------------�
I Normal I Accent grave (' > I
�-----------+----------------------�
! Normal shi f t i Accent egu (') I
r------------+----------------------�
IGraph !Accent grave (') I
�-----------+----------------------�
I G raph shift !Accent egu (') I
�-----------+----------------------�
I Code !Accent circonflex ("') I
r------------+----------------------�
I Code shift ! Umlaut () I
�------------�---------------------�

331

INTERNATIONAL MSX VERSIONS

DIN version
r------------�---------------------,

Mode Function
�-----------+----------------------�
! Normal !Accent grave (') I
�-----------+---------------------- �

! Normal shift i Accent egu (•) I
�-----------+----------------------i
! G raph ! Accent grave (') I *See Note 1 .
�------------+----------------------�
I Graph shift ! Accent egu (1) I *See Note 1 .
�------------ +----------------------�
I Code ! A ccent ci rconflex (�) I
�------------+----------------------i
! Code shift !Umlaut () I
L------------�---------------------�

*Note 1 : In the DIN version, when the SH IFT, GRAPH , or DEAD keys
a r e pressed, an accent sign without a letter is entered.

Fr ench version
r - - - - - - - - - - - - � - ,

Mode function
�-----------+----------------------�

! Normal !Accent circonflex (�) I
�-----------+----------------------�

! Normal sh i f t i Urnlaut <) I
�------------+----------------------i
! G raph !Accent circonflex (�) I
�-----------+----------------------�
! G raph shift ! Umlaut <) I
�-----------+----------------------i
I Code ! Accent circonflex < - > I
�-----------+----------------------i

I Code shift ! Umlaut () I
�-----------�---------------------�

332

INTERNATIONAL MSX VERSIONS

In the DIN and French versions, when the SPACE key is pressed
e i ther the SHIFT, GRAPH , CODE, or DEAD keys are pressed, an
accent sign without al phabet is entered as follows.

; - - - - - - - - - - - - � - - - - - - - - - - - - - - -------�----------------------�

Mode DIN Fr ench
�------------+----------------------+----------------------�

! Normal !Accent grave (') ! Accent circonflex (") I
r------------+----------------------+----------------------�
I Normal shift I Accent egu < ') I Space I
�-----------+----------------------+-------- --------------i

I G raph I (*See Note 1 .) I Accent circonflex ("') I
�------------+----------------------+----------------------;

I G raph shift I (*See Note 1 .) I Space I
�------ ------+----------------------+-------- --------------1

I Code !Accent circonflex (") ! Accent circonflex (") I
�------------+-------- --------------+----------------------i
I Code shift I Space I Space I
� - - - - - - - - - - - - +- "'- �

5 . 3 Screen Mode

The vertical synch ronize f requencies and the default screen
modes of the different versions are as follows.

;-------�-------�---- --T-------T---------------------,

I I I Defaul t i Defaul t i Default screen width I
IVersion iV . Sync. ! screen ! border r----------T- - --------i
I I I mode I col or I S CREEN 0 I SCREEN 1 I
�- -----+- ------+-- -· -- - - +-------+------ -- -- +---------- �
I Japan I I 1 I 7 I I I
�-------1 6 0 Hz �-- -----+-------1 3 9 I I
I U SA I I I I I I
�-------+-------·: I r-----------f J
I U K I I I I I I
r-------1 I I I I 29 I
I DIN I I 0 I 4 I I I
�------1 5 0 Hz I I I 3 7 I I
I French I I I I I I
1---------1 I I I I I
l i NT I I I I I I
L-------�-- - - - - ..l- - - - - - - -1- - - - - - - ..l----------"'------------'

333

INTERNATIONAL MSX V ERSIONS

5 . 4 Other Differ ences among Versions

The default function for the F6 key differs as follows.

r--------T------------,

I Japanese l color 1 5 , 4 , 7 1
�--------+-- ----------�
I Others ! color 1 5 , 4 , 4 1
�-------�-----------�

The Japanese version has a Hiragana-to-Katakana converter for
non-MSX printers; however , other ver sions do not have this
f eature.

The format symbols for the PRINT USING statement that differ
among international versions are as follows.

�----------------------------T--------�-------r--------,

Purpose IJapanese l UK I Others I
�---------------------------+--------+--------+--------�
I Curr ency sign I Yen ¥ I Pound £ I $ I
�----- -------- ----- ---- ----- +-- ------+--------._ _ _ _ _ _ _ _ i
! Fi xed-length string f ield I & I \ I
�---------------------------+- ------- +----------------- 1
!Variable-length string f iel d ! @ I & I
�------------------------ ---._-------�----------------�

The VDP interrupt interval is equal to the vertical synchroniz e
f r eq uency, or 1/60 second in the Japanese and USA ver sions, and
1/50 second in other versions. This has an effect on the
interval to increment the TIME variable.

The symbol for integer division is the Yen sign in the Japanese
version and " \n in all other versions.

The format of DATE used for MSX-DOS is ' yy-mm-dd' (Yea r , Month,
Date> in Japanese version, ' mm-dd-yy' in USA version and ' dd-mmr
yy' in European versions.

334

INTERNATIONAL MSX VERSIONS

5 . 5 ID Bytes

You can build sof tware having
ver sions by using the following

compatibility with all MSX
information suppl ied in the

system ROM.

The format of the ID bytes are a s follow s :

2BH : B7 B6 B5 B4 B3 B2 Bl BO
I I I I I I I I
I I I I �-.L--.L--..1.- Type of character generator
I I I I 0 : J apanese 1 : International
I I I I 2 : Korean
I I I I
I �-�-_._ ____________ Date format
I 0 : Y-M-D 1 : M-D-Y 2 : D-M-Y
I
�--------------------- Interrupt f req uency

0 : 6 0 Hz 1 : 50 Hz

2CH : B7 B6 B5 B4 B3 B2 Bl BO
I I I I I I I I
I I I I �- .L---'--- ·'-- '1)' pe of keyboard
I I I I 0 : J apanese 1 : Inter national
I I I I 2 : French 3 : U K 4 : DIN
I I I I
L.--�- ..1.-_ ..._ ____________ Version of BASIC

0 : Japanese 1 : International

335

NOTES FOR MSX SOFTWARE DEVELOPERS

6 . Notes for MSX Software Developers

1) Do not write programs to directly handle the hardware. Use
routines prepared in BIOS so as to isolate the software f r om
the hardware and make future changes to the hardware without
affecting the existing software possible. The B IOS is built to
access its functions via a j ump table beginning at address 0 00 0 .
The j ump table contains j ump vectors functions that handle the
hardware of the MSX compute r . By using the functions provided
by BIOS, appl ication programs can access the MSX hardware
without modi f ication, even though the hardware is different.

Fot exampl e, the current MSX scans the keyboard by using 8255
PPI. In the near f uture, however, there may be computers
having separate keyboards using an infrared commun ication l ink.
This new computer may not use the 8 2 5 5 PPI ; it might use some
other chip t o do serial communications to handl e the keyboar d .
If the software scanning the keyboa rd uses the 8255 directly,
the new computer would not support the software.

The only exception to the above rule is the VDP. To al low fast
data transfer with the VDP, the ROM contains the locatios of
the VDP in addresses 0 0 06 and 0007 . Address 0006 contains the
read address of the VDP and address 0 007 contains the write
address to the VDP. If the software needs to transfer data at
a high speed, the program can access the VDP directly using
these addresses contained in ROM with the indirect addressing
mode.

In addition, address 0004 contains the address of the character
pattern generator tabl e stored in ROM. This may be of use to
some programs that must keep track of the location of the table.

2) Do not use RAM locations above F380H if you do not have
detailed documentation on the meanings of these locaations.
This area i s used by the system for working storage and access
to these locations may cause your program to malfunction or to
be incompatible with versions released in the f uture. All
locati ons that are unused in the current MSX version wi thin the
above area are reseved for future expansion.

3�

NOTES FOR MSX SOFTWARE DEVELOPERS

3) Software that has to interact with other programs must be
designed in a way that it does not alter the programming
environment. Maj or considerations are as follows.

o Allocate work space
o Share HOOKs

4) There are differences among versions of MSX sold in different
countries. These dif f erences have been restr icted to the
keyboard l ayout and the character generators. The locations
2BH and 2CH contain the special ID bytes that indicate the
characte ristics of the ROM. Software should be wri tten to refer
to these locations so as to wor k on any international version.
See section 5 . 5 ' ID by tes ' for details.

5) Programs distributed in ROM cartridges must run i n any slot ,
primary or secondary . Some of the game software that have been
developped can run only in slot 1 , or only in non-expanded slot .
This DOES cause a big problem.

Programs which use the MSX-BAS IC interpreter with system CALL
statements or device expansion mechanisms, must also determine
the number of the slot in which the cartridge is inserted.

Programs which run independently from the MSX-BAS IC interpreter
<such as game programs) do not have to determine the location
of the cartr idge unl ess they use the CAL SLT routine, the CALBAS
routine, or the ' RST 30H' ; or if the program occupies more than
one page (for example the f irst 16K in 4 0 0 0 H . • 7FFFH, or the
second 16K in BOOOH • • • . OBFFFH) . This is because slot exchanges
are not done during program execution. For exampl e, if you
want to call a routine in your program f rom an interrupt hook,
simply do a ' JP' instruction, not ' RST 30H' , because your
routine will alway s be there.

337

NOTES FOR MSX SOFTWARE DEVELOPERS

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; : ; , ; : ;

•
I Use the following routine to know where you are : .

I
. , ;
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; J ; ; ; ; : ; J ; ; ; ; ; ; : ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; , ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

This routine returns the slot address in the following format
; in [Ace] •
.
I

;

;
;
;

FxxxSSPP
I I l l I
I I I �....._ _ Primary slot # (0-3)
I �...�--_ __ Secondary slot t (0-3)
'---------- 1 if secondary slot t specified

This value can later be used as an input parameter for the
RDSLT, WRSLT, CAL SLT1 ENASLT and 1 RST 3 OH' •

RSLREX; EQU
EXPTBL EQU
88000 EQ U

WHERE:.....AM_ I :
CALL
RRC
RRC

I F B8000

ENDIF

IF

END IF

RRC
RRC

ANI
MOV
MV I
LXI
DAD
ORA
RP
MOV
INX
INX
INX
INX
MOV

BBOOO
RRC
RRC

ANI
ORA
RET

1 3 8H
OFCClH
0

RSLREX;

liB
C, A
B , O
H , EXPTBL
B
M

C , A
H
H
H
H
A, M

11008
c

; S et this to non-zero if the program
; resides at 8000 • • 0 BFFFH

;Read primary slot t
; Move it to bit 0 ,1 of lAce]

;See if this slot is expanded or not

; Set MSB if so
; Not expanded, all done
; Save primary slot number
;Point to SLTTBL entry

;Get what is curr ently output to
; expansion slot register

; Move it to bit 2 , 3 of [Ace]

;Finally form slot address

338

NOTES FOR MSX SOFTWARE DEVELOPERS

; ; ; ; ; ; ; ; J ; ; ; ; ; t ; ; : : t l ; ; ; ; : ; ; ; ; ; ; ; ; ; t ; ; ; ; ; ; ; ; ; , ;
. ,
. '
. '
;
;
. '

I f your program occupies 32K f r om 4000H • . O BFFFH , and
the execution begins f rom the INIT entry of the ROM
at 4000H • • 7FFFH , use the following routine to enabl e the
last hal f :

.
I

i
i

; , ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
ENASLT EQU 24H

CALL
MVI
CALL

WHERE_Aft\._I
H, B O H
ENASLT

6) When changing the contents of register 0 or 1 of the VDP to
change the display mode s, do not write immediate values to them.
Their cur r ent contents are always stored in RGO SAV and RGl SAV ,
respect ively, so get their contents f i rst , then mask off the
unnecessary bits and add your own bits by using AND and OR
instructions. Leave the other bits unchanged. This i s necessary
because some manuf acturers use the EV (External Video) bits to
al low superimposing.

7) When writing values to the various base address registers of
the VDP, always write O ' s to the unused bits near the MSB. This
is impor tant because it makes it possible to expand the
capabil ities of the VDP while maintaining compatibil ity with
the cu rr ent 991 8-cornpatibl e VDP.

8) BIOS provides two ways to read the keyboa rd. Use the routines
depending on to your needs.

1 . Physical key position and real- time keyboard status as
returned value needed.

Use SNSMAT entry

2 . Logical character code needed as a returned value.

Use CHSNS and CHGET

339

